Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(35): e2322755121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39163330

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) pathway regulates cell growth and metabolism in response to many environmental cues, including nutrients. Amino acids signal to mTORC1 by modulating the guanine nucleotide loading states of the heterodimeric Rag GTPases, which bind and recruit mTORC1 to the lysosomal surface, its site of activation. The Rag GTPases are tethered to the lysosome by the Ragulator complex and regulated by the GATOR1, GATOR2, and KICSTOR multiprotein complexes that localize to the lysosomal surface through an unknown mechanism(s). Here, we show that mTORC1 is completely insensitive to amino acids in cells lacking the Rag GTPases or the Ragulator component p18. Moreover, not only are the Rag GTPases and Ragulator required for amino acids to regulate mTORC1, they are also essential for the lysosomal recruitment of the GATOR1, GATOR2, and KICSTOR complexes, which stably associate and traffic to the lysosome as the "GATOR" supercomplex. The nucleotide state of RagA/B controls the lysosomal association of GATOR, in a fashion competitively antagonized by the N terminus of the amino acid transporter SLC38A9. Targeting of Ragulator to the surface of mitochondria is sufficient to relocalize the Rags and GATOR to this organelle, but not to enable the nutrient-regulated recruitment of mTORC1 to mitochondria. Thus, our results reveal that the Rag-Ragulator complex is the central organizer of the physical architecture of the mTORC1 nutrient-sensing pathway and underscore that mTORC1 activation requires signal transduction on the lysosomal surface.


Assuntos
Aminoácidos , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP , Nutrientes , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Lisossomos/metabolismo , Humanos , Aminoácidos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nutrientes/metabolismo , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células HEK293
2.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328052

RESUMO

The ubiquitous skin colonist Staphylococcus epidermidis elicits a CD8 + T cell response pre-emptively, in the absence of an infection 1 . However, the scope and purpose of this anti-commensal immune program are not well defined, limiting our ability to harness it therapeutically. Here, we show that this colonist also induces a potent, durable, and specific antibody response that is conserved in humans and non-human primates. A series of S. epidermidis cell-wall mutants revealed that the cell surface protein Aap is a predominant target. By colonizing mice with a strain of S. epidermidis in which the parallel ß-helix domain of Aap is replaced by tetanus toxin fragment C, we elicit a potent neutralizing antibody response that protects mice against a lethal challenge. A similar strain of S. epidermidis expressing an Aap-SpyCatcher chimera can be conjugated with recombinant immunogens; the resulting labeled commensal elicits high titers of antibody under conditions of physiologic colonization, including a robust IgA response in the nasal mucosa. Thus, immunity to a common skin colonist involves a coordinated T and B cell response, the latter of which can be redirected against pathogens as a novel form of topical vaccination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA