Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570787

RESUMO

A novel experimental protocol based on a reverse micellar method is presented for the synthesis of graphene oxide (GO)-based hybrids with spin crossover nanoparticles (SCO NPs) of the 1D iron(II) coordination polymer with the formula [Fe(NH2trz)3](Br2). By introducing different quantities of 0.5% and 1.0% of GO (according to iron(II)) into the aqueous phase, two hybrids, NP4 and NP5, were synthesized, respectively. The morphological homogeneity of the NPs on the surface of the GO flakes is greatly improved in comparison to the pristine [Fe(NH2trz)3](Br2) NPs. From the magnetic point of view and at a low magnetic sweep rate of 1 K/min, a two-step hysteretic behavior is observed for NP4 and NP5, where the onset of the low-temperature second step appeared at 40% and 30% of the HS fraction, respectively. For faster sweep rates of 5-10 K/min, the two steps from the cooling branch are progressively smeared out, and the critical temperatures observed are T1/2↑ = 343 K and T1/2↓ = 288 K, with a thermal width of 55 K for both NP4 and NP5. A Raman laser power-assisted protocol was used to monitor the thermal tolerance of the hybrids, while XPS analysis revealed electronic interactions between the SCO NPs and the GO flakes.

2.
Dalton Trans ; 52(10): 2937-2941, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36825841

RESUMO

A synthetically controllable two-step spin transition was observed in iron(II) spin crossover nanoparticles of the dehydrated one-dimensional coordination polymer [Fe(NH2trz)3]Br2 (NH2trz = 4-amino-1,2,4-triazole) using the reverse micellar method. The change from two-step to one-step hysteretic characteristics succeeded by changing the reaction time.

3.
Dalton Trans ; 51(5): 1985-1994, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35029246

RESUMO

The 1 : 2 reaction between Dy(O2CMe)3·4H2O and 1-acetyl-2-napthol (LH) in MeOH has provided access to the complex [Dy2L6(MeOH)]·MeOH (1·MeOH) in a good yield. The structures of the isomorphous complex 1·MeOH and its doped diamagnetic yttrium analogue [Dy0.14Y1.86L6(MeOH)]·MeOH (Dy@Y2) have been determined by single-crystal X-ray crystallography and characterized based on elemental analyses, IR spectra, and powder X-ray patterns. Combined dc and ac magnetic susceptibility and the magnetization data for 1 suggest that this complex shows slow magnetic relaxation. Under a 0 Oe dc field, a single relaxation mechanism is seen while two magnetization relaxation processes are evident under a 1500 G external magnetic field. The fit to the Arrhenius law has been performed using the 1.8-10 K ac data, affording an effective barrier for the magnetization reversal of 13 K and 7 K under the external dc field. Theoretical studies have been performed using ab initio and density functional methodologies to understand the electronic structure and the magnetic relaxation dynamics resulting from the single DyIII ion as well as from the dinuclear exchange-coupled states. Rich powder EPR spectra at the X-band and Q-band were obtained from Dy@Y2, as well as from the 1·MeOH dimer, while simulation studies revealed the ferromagnetic nature of the interaction between the DyIII ions in accordance with theoretical studies.

4.
Dalton Trans ; 50(9): 3109-3115, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33570077

RESUMO

Spin Crossover (SCO) particles at the nanometric scale provide an alternative point of view and a new perspective concerning the development of a new generation of spintronic, electronic, photonic and mechanical devices. The coexistence of the SCO phenomenon with the accompanying hysteresis loop enhances the functionality of future devices for storing and processing information. Despite all promising facts, the SCO phenomena are greatly affected by cooperativity issues resulting in a direct relation between the decrease of the size of nanopatricle and the overall decrease of cooperativity towards more gradual spin transitions. This minireview aims to summarise the synthetic techniques for the synthesis of 2-D FeII SCO particles at the nanometric scale, an underexplored area of research, highlighting the effects of the size-reduction on the magnetic properties of the corresponding nanoparticles and hopefuly showcasing the importance of studying in the context of 2D limit the SCO phenomena.

5.
Inorg Chem ; 57(11): 6391-6400, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29775295

RESUMO

While synthetic methods for the grafting of nanoparticles or photoactive molecules onto carbon nanotubes (CNTs) have been developed in the last years, a very limited number of reports have appeared on the grafting of single-molecule magnets (SMMs) onto CNTs. There are many potential causes, mainly focused on the fact that the attachment of molecules on surfaces remains not trivial and their magnetic properties are significantly affected upon attachment. Nevertheless, implementation of this particular type of hybrid material in demanding fields such as spintronic devices makes of utmost importance the investigation of new synthetic protocols for effective grafting. In this paper, we demonstrate a new experimental protocol for the noncovalent grafting of DyIII2 SMM, [Dy2(NO3)2(saph)2(DMF)4], where H2saph = N-salicylidene- o-aminophenol and DMF = N, N-dimethylformamide, onto the surface of functionalized multiwalled CNTs (MWCNTs). We present a simple wet chemical method, followed by an extensive washing protocol, where the cross-referencing of data from high-resolution transmission electron microscopy combined with electron energy loss spectroscopy, conventional magnetic measurements (direct and alternating current), X-ray photoelectron spectroscopy, and Raman spectroscopy was used to investigate the physical properties, chemical nature, and overall magnetic behavior of the resulting hybrids. A key point to the whole synthesis involves the functionalization of MWCNTs with carboxylic groups, which proved to be a powerful strategy for enhancing the ability to process MWCNTs and facilitating the preparation of hybrid composites. While in the majority of analogous hybrid materials the raw carbon material (multiwalled or single-walled nanotubes) is heavily treated to minimize the contribution of contaminant traces of magnetic nanoparticles with important effects on their electronic properties, this method can lead easily to elimination of the largest part of the impurities and provide an effective way to investigate/discriminate the magnetic contribution of the SMM molecules.

6.
Dalton Trans ; (2): 307-17, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19089012

RESUMO

The employment of di-2-pyridyl ketone, (py)2CO, in manganese(II) acetate chemistry is reported. The syntheses, crystal structures and magnetochemical characterisation are described for [MnII4(O2CMe)4{(py)2C(OH)O}4] () and [MnII10MnIII4O4(O2CMe)20{(py)2C(OH)O}4] (), where (py)2C(OH)O- is the monoanion of the gem-diol form of the ligand. The reaction of Mn(O2CMe)(2).4H2O with one equivalent of (py)2CO in Me2CO gives . Complex was obtained from the 1:1 reaction, in EtOH, between Mn(O2CMe)(2).4H2O and (py)2CO in the presence of NEt3. The tetranuclear molecule has a cubane topology with the MnII and the deprotonated oxygen atoms from the eta1:eta3:eta1:micro3 ligands occupying alternate vertices of the cube. The core of consists of two mixed valence cubane {MnII2MnIII2(micro3-O)2(micro3-OR'')2}4+ subunits that are linked through an unusual {MnII6(eta1:eta2:micro-O2CMe)6(eta2:eta2:micro3-O2CMe)2}4+ moiety via twelve eta1:eta1:micro MeCO2- groups. Some suggestions have been made concerning the possible assembly of from . The magnetic properties of in the 300-5 K range have been modelled with two J values, which reveal weak antiferromagnetic interactions within the molecule. Complex has a low spin ground state. This work demonstrates the flexibility, versatility and synthetic potential of combining (py)2CO with carboxylate ligands.

7.
Inorg Chem ; 47(23): 10998-1009, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18937446

RESUMO

Redox events involving both metal and ligand sites are receiving increased attention since a number of biological processes direct redox equivalents toward functional residues. Metalloradical synthetic analogues remain scarce and require better definition of their mode of formation and subsequent operation. The trisamido-amine ligand [(RNC6H4)3N]3-, where R is the electron-rich 4-t-Bu Ph, is employed in this study to generate redox active residues in manganese and chromium complexes. Solutions of [(L1)Mn(II)-THF]- in THF are oxidized by dioxygen to afford [(L1re-1)Mn(III)-(O)2-Mn(III)(L1 re-1)]2-as the major product. The rare dinuclear manganese (III,III) core is stabilized by a rearranged ligand that has undergone an one-electron oxidative transformation, followed by retention of the oxidation equivalent as a pi radical in ano-diiminobenzosemiquinonate moiety. Magnetic studies indicate that the ligand-centered radical is stabilized by means of extended antiferromagnetic coupling between the S ) 1/2 radical and the adjacent S ) 2 Mn(III) site, as well as between the two Mn(III) centers via the dioxo bridge. Electrochemical and EPR data suggest that this system can store higher levels of oxidation potency. Entry to the corresponding Cr(III) chemistry is achieved by employing CrCl3 to access both[(L1)Cr(III)-THF] and [(L1re-1)Cr(III)-THF(Cl)], featuring the intact and the oxidatively rearranged ligands, respectively. The latter is generated by ligand-centered oxidation of the former compound. The rearranged ligand is perceived to be the product of an one-electron oxidation of the intact ligand to afford a metal-bound aminyl radical that subsequently mediates a radical 1,4-(N-to-N) aryl migration.


Assuntos
Cromo/química , Manganês/química , Compostos Organometálicos/química , Cloretos/química , Compostos de Cromo/química , Eletroquímica , Ligantes , Magnetismo , Oxidantes/química , Oxirredução , Oxigênio/química
8.
Chemistry ; 11(8): 2295-306, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15685580

RESUMO

Reaction of NH4VO3 with sulfur dioxide affords the hexanuclear cluster (NH4)2(Et4N)[(V(IV)O)6(mu4-O)2(mu3-OH)2(mu3-SO3)4(H2O)2]Cl x H2O (1), and the decapentanuclear host-guest compound (Et4N)5{Cl subset [(VO)15(mu3-O)18(mu-O)3]} x 3 H2O (2). Sequential addition of magnesium oxide to an acidic aqueous solution of NH4VO3 (pH approximately 0) followed by (NH4)2SO3 resulted in the formation of either the non-oxo polymeric vanadium(IV) compound trans-(NH4)2[V(IV)(OH)2(mu-SO3)2] (3) or the polymeric oxovanadium(IV) sulfite (NH4)[V(IV)O(SO3)1.5(H2O)] x 2.5 H2O (4) at pH values of 6 and 4, respectively. The decameric vanadium(V) compound {Na4(mu-H2O)8(H2O)6}[Mg(H2O)6][V(V)10(O)8(mu6-O)2(mu3-O)14] x 3 H2O (5) was synthesised by treating an acidic aqueous solution of NH4VO3 with MgO and addition of NaOH to pH approximately 6. All the compounds were characterised by single-crystal X-ray structure analysis. The crystal structure of compound 1 revealed an unprecedented structural motif of a cubane unit [M4(mu4-O)2(mu3-OH)2] connected to two other metal atoms. Compound 3 comprises a rare example of a non-oxo vanadium(IV) species isolated from aqueous solution and in the presence of the reducing agent SO3(2-), while compound 4 represents a rare example of an open-framework species isolated at room temperature (20 degrees C). In addition to the synthesis and crystallographic studies, we report the IR and magnetic properties (for 1, 2 and 3) of these vanadium clusters as well as theoretical studies on compound 3.


Assuntos
Sulfitos/química , Compostos de Tungstênio/química , Compostos de Vanádio/química , Ânions/química , Cristalografia por Raios X , Ligação de Hidrogênio , Magnetismo , Modelos Moleculares , Estrutura Molecular , Temperatura , Compostos de Tungstênio/síntese química , Compostos de Vanádio/síntese química
9.
J Am Chem Soc ; 125(27): 8371-6, 2003 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-12837109

RESUMO

We report here the X-ray magnetic circular dichroism (XMCD) study at the Gd M(4,5)- and L(2,3)-edges of two linear magnetic chains involving Gd(III) cations bridged by nitronyl nitroxide radicals. This spectroscopy directly probes the magnetic moments of the 4f and 5d orbitals of the gadolinium ions. We compare macroscopic magnetic measurements and local XMCD signals. The M(4,5)-edges results are in agreement with the J values extracted from the fits of the SQUID magnetic measurements. The L(2,3)-edges signals show that the electronic density in the Gd 5d orbitals depends on the neighbors of the gadolinium cations. Nevertheless, the 5d orbitals do not seem to play any role in the superexchange pathway between radicals through the metal ion proposed to explain the particular magnetic exchange interactions between the radicals in these chains.

10.
Chem Commun (Camb) ; (7): 819-21, 2003 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-12739628

RESUMO

Reactions of Mn sources with di-2-pyridyl ketone, (2-py)2CO, and phenyl 2-pyridyl ketone oxime, (ph)(2-py)CNOH, give the novel clusters [Mn10(II)Mn4(III)O4(O2CMe)20[(2-py)2C(OH)O]4] 1 and [Mn4(II)Mn4(III)O2(OH)2(O2CPh)10[(ph)(2-py)CNO]4] 2, respectively, which possess low-spin ground states; the observed tetradecanuclearity in 1 is extremely rare in 3d-metal chemistry, while the core of 2 has a unique topology consisting of two linked [Mn2(II)Mn2(III)O(OH)] units.

11.
J Inorg Biochem ; 93(3-4): 256-64, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12576289

RESUMO

The effect on DNA and the antibacterial activity of a series of high nuclearity nickel compounds with three, four and five metal atoms were examined. The compounds have a mixed ligand composition with salicylhydroxamic acid and di-2-pyridyl-ketonoxime as chelate agents. In the trinuclear compound Ni(3)(shi)(2)(Hpko)(2)(py)(2)(1), two metal ions show a square planar geometry while the third one is in an octahedral environment. The compounds with four and five nickel atoms construct metallacrown cores with two distinct connectivities. The tetranuclear vacant metallacrown [12-MC(Ni(II)N(Hshi)2(pko)2)-4](2+) shows the connectivity pattern [-O-Ni-O-N-Ni-N-](2), while the pentanuclear ([Ni(II)][12-MC(Ni(II)N(shi)2(pko)2)-4])(2+) follows the pattern [-Ni-O-N-](4). Two distinct arrangements of the chelates around the ring metal ions were observed; a 6-5-6-5-6-5-6-5 arrangement for the [12-MC(Ni(II)N(Hshi)2(pko)2)-4] core and a 6-6-5-5-6-6-5-5 arrangement for the [12-MC(Ni(II)N(shi)2(pko)2)-4] core. Magnetic variable temperature susceptibility study of the trinuclear compound revealed the presence of one paramagnetic nickel(II) ion with strong crystal field dependence, with D=5.0(4) cm(-1), g(xy)=2.7(3) and g(z)=2.3(3). The effect of the synthesized Ni(II) complexes on the integrity and electrophoretic mobility of nucleic acids was examined. Only compounds 2, 3 and 4 altered the mobility of pDNA, forming high molecular weight concatamers at low concentrations or precipitates at higher concentrations. Antibacterial activity screening of the above compounds suggests that nickel compounds 2, 3 and 4 were the most active and can act as potent antibacterial agents.


Assuntos
Antibacterianos/química , Bactérias/efeitos dos fármacos , Níquel/química , Compostos Organometálicos/química , Antibacterianos/farmacologia , Cristalografia por Raios X , DNA Bacteriano/metabolismo , Eletroforese em Gel de Ágar , Ligantes , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Organometálicos/farmacologia , Plasmídeos/isolamento & purificação , Plasmídeos/metabolismo
12.
Inorg Chem ; 41(24): 6474-87, 2002 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-12444793

RESUMO

The preparations, X-ray structures, and detailed physical characterizations are presented for three new tetranuclear Fe(III)/RCO(2)(-)/phen complexes, where phen = 1,10-phenanthroline: [Fe(4)(OHO)(OH)(2)(O(2)CMe)(4)(phen)(4)](ClO(4))(3).4.4MeCN.H(2)O (1.4.4MeCN.H(2)O); [Fe(4)O(2)(O(2)CPh)(7)(phen)(2)](ClO(4)).2MeCN (2.2MeCN); [Fe(4)O(2)(O(2)CPh)(8)(phen)(2)].2H(2)O (3.2H(2)O). Complex 1.4.4MeCN.H(2)O crystallizes in space group P2(1)/n, with a = 18.162(9) A, b = 39.016(19) A, c = 13.054(7) A, beta = 104.29(2) degrees, Z = 4, and V = 8963.7 A(3). Complex 2.2MeCN crystallizes in space group P2(1)/n, with a = 18.532(2) A, b = 35.908(3) A, c = 11.591(1) A, beta = 96.42(1) degrees, Z = 4, and V = 7665(1) A(3). Complex 3.2H(2)O crystallizes in space group I2/a, with a = 18.79(1) A, b = 22.80(1) A, c = 20.74(1) A, beta = 113.21(2) degrees, Z = 4, and V = 8166(1) A(3). The cation of 1 contains the novel [Fe(4)(mu(4)-OHO)(mu-OH)(2)](7+) core. The core structure of 2 and 3 consists of a tetranuclear bis(mu(3)-O) cluster disposed in a "butterfly" arrangement. Magnetic susceptibility data were collected on 1-3 in the 2-300 K range. For the rectangular complex 1, fitting the data to the appropriate theoretical chi(M) vs T expression gave J(1) = -75.4 cm(-1), J(2) = -21.4 cm(-1), and g = 2.0(1), where J(1) and J(2) refer to the Fe(III)O(O(2)CMe)(2)Fe(III) and Fe(III)(OH)Fe(III) pairwise exchange interactions, respectively. The S = 0 ground state of 1 was confirmed by 2 K magnetization data. The data for 2 and 3 reveal a diamagnetic ground state with antiferromagnetic exchange interactions among the four high-spin Fe(III) ions. The exchange coupling constant J(bb) ("body-body" interaction) is indeterminate due to prevailing spin frustration, but the "wing-body" antiferromagnetic interaction (J(wb)) was evaluated to be -77.6 and -65.7 cm(-1) for 2 and 3, respectively, using the appropriate spin Hamiltonian approach. Mössbauer spectra of 1-3 are consistent with high-spin Fe(III) ions. The data indicated asymmetry of the Fe(4) core of 1 at 80 K, which is not detected at room temperature due to thermal motion of the core. The spectra of 2 and 3 analyze as two quadrupole-split doublets which were assigned to the body and wing-tip pairs of metal ions. (1)H NMR spectra are reported for 1-3 with assignment of the main resonances.

14.
Angew Chem Int Ed Engl ; 40(17): 3211-3214, 2001 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-29712057

RESUMO

The controlled cleavage of coordination polymers consisting of well-defined large units can be employed for the rational synthesis of high nuclearity clusters. This synthetic concept is demonstrated by the conversion (schematically shown) of a three-dimensional ZnII coordination polymer containing repeating hexameric units with a "twin-anchor" arrangement of the metal ions into the corresponding hexanuclear cluster by reaction with a donor solvent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...