Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Plant Res ; 134(6): 1213-1224, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34405353

RESUMO

Mixotrophy (MX, also called partial mycoheterotrophy) in plants is characterized by isotopic abundances that differ from those of autotrophs. Previous studies have evaluated mycoheterotrophy in MX plants associated with fungi of similar ecological characteristics, but little is known about the differences in the relative abundances of 13C and 15N in an orchid species that associates with several different mycobionts species. Since the chlorophyllous orchid Cremastra variabilis Nakai associates with various fungi with different ecologies, we hypothesized that it may change its relative abundances of 13C and 15N depending on the associated mycobionts. We investigated mycobiont diversity in the chlorophyllous orchid C. variabilis together with the relative abundance of 13C and 15N and morphological underground differentiation (presence or absence of a mycorhizome with fungal colonization). Rhizoctonias (Tulasnellaceae, Ceratobasidiaceae, Sebacinales) were detected as the main mycobionts. High differences in δ13C values (- 34.7 to - 27.4 ‰) among individuals were found, in which the individuals associated with specific Psathyrellaceae showed significantly high relative abundance of 13C. In addition, Psathyrellaceae fungi were always detected on individuals with mycorhizomes. In the present study, MX orchid association with non-rhizoctonia saprobic fungi was confirmed, and the influence of mycobionts on morphological development and on relative abundance of 13C and 15N was discovered. Cremastra variabilis may increase opportunities to gain nutrients from diverse partners, in a bet-hedging plasticity that allows colonization of various environmental conditions.


Assuntos
Basidiomycota , Micorrizas , Orchidaceae , Filogenia , Simbiose
2.
Mycorrhiza ; 30(1): 51-61, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31965295

RESUMO

Some mixotrophic plants from temperate forests use the mycorrhizal fungi colonizing their roots as a carbon source to supplement their photosynthesis. These fungi are also mycorrhizal on surrounding trees, from which they transfer carbon to mixotrophic plants. These plants are thus reputed difficult to transplant, even when their protection requires it. Here, we take profit of a successful ex situ pot cultivation over 1 to 3 years of the mixotrophic orchid Epipacis helleborine to investigate its mycorrhizal and nutrition status. Firstly, compared with surrounding autotrophic plants, it did not display the higher N content and higher isotopic (13C and 15N) abundance that normally feature mixotrophic orchids because they incorporate N-, 13C-, and 15N-rich fungal biomass. Second, fungal barcoding by next-generation sequencing revealed that the proportion of ectomycorrhizal fungi (expressed as percentage of the total number of either reads or operational taxonomic units) was unusually low compared with E. helleborine growing in situ: instead, we found a high percentage of rhizoctonias, the usual mycorrhizal partners of autotrophic orchids. Altogether, this supports autotrophic survival. Added to the recently published evidence that plastid genomes of mixotrophic orchids have intact photosynthetic genes, this suggests that at least some of them have abilities for autotrophy. This adds to the ecological plasticity of mixotrophic plants, and may allow some reversion to autotrophy in their evolution.


Assuntos
Micorrizas , Orchidaceae , Processos Autotróficos , Fotossíntese , Raízes de Plantas , Simbiose
3.
Genome Biol Evol ; 11(9): 2457-2467, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31396616

RESUMO

Mixotrophic species use both organic and mineral carbon sources. Some mixotrophic plants combine photosynthesis and a nutrition called mycoheterotrophy, where carbon is obtained from fungi forming mycorrhizal symbiosis with their roots. These species can lose photosynthetic abilities and evolve full mycoheterotrophy. Besides morphological changes, the latter transition is associated with a deep alteration of the plastid genome. Photosynthesis-related genes are lost first, followed by housekeeping genes, eventually resulting in a highly reduced genome. Whether relaxation of selective constraints already occurs for the plastid genome of mixotrophic species, which remain photosynthetic, is unclear. This is partly due to the difficulty of comparing plastid genomes of autotrophic, mixotrophic, and mycoheterotrophic species in a narrow phylogenetic framework. We address this question in the orchid tribe Neottieae, where this large assortment of nutrition types occurs. We sequenced 13 new plastid genomes, including 9 mixotrophic species and covering all 6 Neottieae genera. We investigated selective pressure on plastid genes in each nutrition type and conducted a phylogenetic inference of the group. Surprisingly, photosynthesis-related genes did not experience selection relaxation in mixotrophic species compared with autotrophic relatives. Conversely, we observed evidence for selection intensification for some plastid genes. Photosynthesis is thus still under purifying selection, maybe because of its role in fruit formation and thus reproductive success. Phylogenetic analysis resolved most relationships, but short branches at the base of the tree suggest an evolutionary radiation at the beginning of Neottieae history, which, we hypothesize, may be linked to mixotrophy emergence.


Assuntos
Genomas de Plastídeos , Orchidaceae/citologia , Orchidaceae/genética , Processos Autotróficos , Evolução Biológica , DNA de Plantas/genética , Processos Heterotróficos , Orchidaceae/classificação , Orchidaceae/microbiologia , Filogenia , Simbiose
4.
Plant J ; 98(5): 826-841, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30735596

RESUMO

Mycoheterotrophic plants have lost photosynthesis and obtain carbon through mycorrhizal fungi colonizing their roots. They are likely to have evolved from mixotrophic ancestors, which rely on both photosynthesis and fungal carbon for their development. Whereas our understanding of the ecological and genomic changes associated with the evolutionary shift to mycoheterotrophy is deepening, little information is known about the specific metabolic and physiological features driving this evolution. We investigated this issue in naturally occurring achlorophyllous variants of temperate mixotrophic orchids. We carried out an integrated transcriptomic and metabolomic analysis of the response to achlorophylly in the leaves of three mixotrophic species sampled in natura. Achlorophyllous leaves showed major impairment of their photosynthetic and mineral nutrition functions, strong accumulation of free amino acids, overexpression of enzymes and transporters related to sugars, amino acids and fatty acid catabolism, as well as induction of some autophagy-related and biotic stress genes. Such changes were reminiscent of these reported for variegated leaves and appeared to be symptomatic of a carbon starvation response. Rather than decisive metabolic innovations, we suggest that the evolution towards mycoheterotrophy in orchids is more likely to be reliant on the versatility of plant metabolism and an ability to exploit fungal organic resources, especially amino acids, to replace missing photosynthates.


Assuntos
Perfilação da Expressão Gênica/métodos , Metabolômica/métodos , Orchidaceae/genética , Fotossíntese , Folhas de Planta/genética , Raízes de Plantas/genética , Aminoácidos/metabolismo , Evolução Biológica , Carbono/metabolismo , Ácidos Graxos/metabolismo , Micorrizas/fisiologia , Orchidaceae/metabolismo , Orchidaceae/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Simbiose
5.
Mitochondrial DNA B Resour ; 4(2): 2683-2684, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-33365682

RESUMO

Here, we report the first complete chloroplast genome of Platanthera chlorantha (Orchidaceae: Orchidoideae). The circular genome with the length of 154,260 bp possesses the typical structure consisting of a large single copy region (LSC) of 83,279 bp and a small single copy region (SSC) of 17,759 bp, separated from each other by two copies of inverted repeats (IRs) of 26,611 bp. The plastome encodes 134 genes, of which 88 were protein-coding, eight encoded ribosomal RNA, and 38 transfer RNAs. The overall GC content was 36.74%. The plastome sequence provided here constitutes a valuable resource for analyzing genetic diversity of the Orchidaceae family.

7.
Front Plant Sci ; 8: 1497, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28912791

RESUMO

Two distinct nutritional syndromes have been described in temperate green orchids. Most orchids form mycorrhizas with rhizoctonia fungi and are considered autotrophic. Some orchids, however, associate with fungi that simultaneously form ectomycorrhizas with surrounding trees and derive their carbon from these fungi. This evolutionarily derived condition has been called mixotrophy or partial mycoheterotrophy and is characterized by 13C enrichment and high N content. Although it has been suggested that the two major nutritional syndromes are clearly distinct and tightly linked to the composition of mycorrhizal communities, recent studies have challenged this assumption. Here, we investigated whether mycorrhizal communities and nutritional syndromes differed between seven green orchid species that co-occur under similar ecological conditions (coastal dune slacks). Our results showed that mycorrhizal communities differed significantly between orchid species. Rhizoctonia fungi dominated in Dactylorhiza sp., Herminium monorchis, and Epipactis palustris, which were autotrophic based on 13C and N content. Conversely, Liparis loeselii and Epipactis neerlandica associated primarily with ectomycorrhizal fungi but surprisingly, 13C and N content supported mixotrophy only in E. neerlandica. This, together with the finding of some ectomycorrhizal fungi in rhizoctonia-associated orchids, suggests that there exists an ecological continuum between the two syndromes. The presence of a large number of indicator species associating with individual orchid species further confirms previous findings that mycorrhizal fungi may be important factors driving niche-partitioning in terrestrial orchids and therefore contribute to orchid coexistence.

8.
Ann Bot ; 120(3): 361-371, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575199

RESUMO

Background and Aims: In temperate forests, some green plants, namely pyroloids (Pyroleae, Ericaceae) and some orchids, independently evolved a mode of nutrition mixing photosynthates and carbon gained from their mycorrhizal fungi (mixotrophy). Fungal carbon is more enriched in 13C than photosynthates, allowing estimation of the proportion of carbon acquired heterotrophically from fungi in plant biomass. Based on 13C enrichment, mixotrophic orchids have previously been shown to increase shoot autotrophy level over the growth season and with environmental light availability. But little is known about the plasticity of use of photosynthetic versus fungal carbon in pyroloids. Methods: Plasticity of mixotrophy with leaf age or light level (estimated from canopy openness) was investigated in pyroloids from three Estonian boreal forests. Bulk leaf 13C enrichment of five pyroloid species was compared with that of control autotrophic plants along temporal series (over one growth season) and environmental light gradients (n=405 samples). Key Results: Mixotrophic 13C enrichment was detected at studied sites for Pyrola chlorantha and Orthilia secunda (except at one site for the latter), but not for Chimaphila umbellata, Pyrola rotundifolia and Moneses uniflora. Enrichment with 13C did not vary over the growth season or between leaves from current and previous years. Finally, although one co-occurring mixotrophic orchid showed 13C depletion with increasing light availability, as expected for mixotrophs, all pyroloids responded identically to autotrophic control plants along light gradients. Conclusions: A phylogenetic trend previously observed is further supported: mixotrophy is rarely supported by 13C enrichment in the Chimaphila + Moneses clade, whereas it is frequent in the Pyrola + Orthilia clade. Moreover, pyroloid mixotrophy does not respond plastically to ageing or to light level. This contrasts with the usual view of a convergent evolution with orchids, and casts doubt on the way pyroloids use the carbon gained from their mycorrhizal fungi, especially to replace photosynthetic carbon.


Assuntos
Ericaceae/classificação , Ericaceae/microbiologia , Micorrizas/fisiologia , Taiga , Processos Autotróficos , Evolução Biológica , Estônia , Luz , Fotossíntese , Filogenia
9.
Gen Comp Endocrinol ; 243: 10-14, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27570058

RESUMO

Arginine vasotocin (AVT) is known to play an important role in the regulation of social behavior in a number of vertebrate species. Nevertheless, the relationship between AVT and intraspecific interactions appears complex and in some cases contradictory. Moreover, AVT influences other behaviors, which are not primarily social including exploratory behavior, locomotion and thermoregulation. Some of these behavioral effects may be side-effects from a general influence of AVT on physiology. Indeed AVT can regulate metabolism and osmoregulation. Because most studies have been conducted using mammals and birds, its role in modulating behavior in other vertebrate groups is largely unknown. In this study we examined the effect of AVT on the social behavior of male common lizards, Zootoca vivipara. Moreover, considering the variety of pathways AVT could be involved in, we investigated its consequences on thermoregulatory behavior and physiological performance. In mid-June 2010, 74 males were captured from field sites (Mont-Lozère, South-eastern France) and kept in the laboratory for three weeks to obtain behavioral (reaction to conspecific odors, thermoregulation) and physiological (endurance, testosterone level) measurements. We demonstrated that injection of AVT reduced testosterone level and affected social behavior in different ways depending on the size of an individual. Specifically, small males injected with AVT were less attracted by conspecific odors than small control males, and no effect was detected in large males. Moreover, AVT promoted thermoregulatory behavior and enhanced endurance. These results are concordant with previous results obtained in this species in studies on stress suggesting that AVT may act through its influence on corticosterone secretion.


Assuntos
Comportamento Animal/efeitos dos fármacos , Relações Interpessoais , Lagartos/metabolismo , Vasoconstritores/farmacologia , Vasotocina/farmacologia , Animais , Lagartos/crescimento & desenvolvimento , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...