Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(23): eadn6603, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838146

RESUMO

Standard zebrafish transgenesis involves random transgene integration with resource-intensive screening. While phiC31 integrase-based attP/attB recombination has streamlined transgenesis in mice and Drosophila, validated attP-based landing sites for universal applications are lacking in zebrafish. Here, we developed phiC31 Integrase Genomic Loci Engineered for Transgenesis (pIGLET) as transgenesis approach, with two attP landing sites pIGLET14a and pIGLET24b from well-validated Tol2 transgenes. Both sites facilitate diverse transgenesis applications including reporters and Cre/loxP transgenes. The pIGLET14a and pIGLET24b landing sites consistently yield 25 to 50% germline transmission, substantially reducing the resources needed for transgenic line generation. Transgenesis into these sites enables reproducible expression patterns in F0 zebrafish embryos for enhancer discovery and testing of gene regulatory variants. Together, our new landing sites streamline targeted, reproducible zebrafish transgenesis as a robust platform for various applications while minimizing the workload for generating transgenic lines.


Assuntos
Animais Geneticamente Modificados , Técnicas de Transferência de Genes , Transgenes , Peixe-Zebra , Animais , Peixe-Zebra/genética , Integrases/genética , Integrases/metabolismo , Sítios de Ligação Microbiológicos/genética
2.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38106217

RESUMO

Standard methods for transgenesis in zebrafish depend on random transgene integration into the genome followed by resource-intensive screening and validation. Targeted vector integration into validated genomic loci using phiC31 integrase-based attP/attB recombination has transformed mouse and Drosophila transgenesis. However, while the phiC31 system functions in zebrafish, validated loci carrying attP-based landing or safe harbor sites suitable for universal transgenesis applications in zebrafish have not been established. Here, using CRISPR-Cas9, we converted two well-validated single insertion Tol2-based zebrafish transgenes with long-standing genetic stability into two attP landing sites, called phiC31 Integrase Genomic Loci Engineered for Transgenesis (pIGLET). Generating fluorescent reporters, loxP-based Switch lines, CreERT2 drivers, and gene-regulatory variant reporters in the pIGLET14a and pIGLET24b landing site alleles, we document their suitability for transgenesis applications across cell types and developmental stages. For both landing sites, we routinely achieve 25-50% germline transmission of targeted transgene integrations, drastically reducing the number of required animals and necessary resources to generate individual transgenic lines. We document that phiC31 integrase-based transgenesis into pIGLET14a and pIGLET24b reproducibly results in representative reporter expression patterns in injected F0 zebrafish embryos suitable for enhancer discovery and qualitative and quantitative comparison of gene-regulatory element variants. Taken together, our new phiC31 integrase-based transgene landing sites establish reproducible, targeted zebrafish transgenesis for numerous applications while greatly reducing the workload of generating new transgenic zebrafish lines.

3.
Dis Model Mech ; 16(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37125615

RESUMO

Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.


Assuntos
Doenças Cardiovasculares , Cardiopatias Congênitas , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Padronização Corporal/genética , Coração , Cardiopatias Congênitas/genética , Fatores de Transcrição/metabolismo , Mesoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
4.
Nature ; 618(7965): 543-549, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225983

RESUMO

The development of paired appendages was a key innovation during evolution and facilitated the aquatic to terrestrial transition of vertebrates. Largely derived from the lateral plate mesoderm (LPM), one hypothesis for the evolution of paired fins invokes derivation from unpaired median fins via a pair of lateral fin folds located between pectoral and pelvic fin territories1. Whilst unpaired and paired fins exhibit similar structural and molecular characteristics, no definitive evidence exists for paired lateral fin folds in larvae or adults of any extant or extinct species. As unpaired fin core components are regarded as exclusively derived from paraxial mesoderm, any transition presumes both co-option of a fin developmental programme to the LPM and bilateral duplication2. Here, we identify that the larval zebrafish unpaired pre-anal fin fold (PAFF) is derived from the LPM and thus may represent a developmental intermediate between median and paired fins. We trace the contribution of LPM to the PAFF in both cyclostomes and gnathostomes, supporting the notion that this is an ancient trait of vertebrates. Finally, we observe that the PAFF can be bifurcated by increasing bone morphogenetic protein signalling, generating LPM-derived paired fin folds. Our work provides evidence that lateral fin folds may have existed as embryonic anlage for elaboration to paired fins.


Assuntos
Nadadeiras de Animais , Evolução Biológica , Mesoderma , Peixe-Zebra , Animais , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/embriologia , Nadadeiras de Animais/crescimento & desenvolvimento , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Mesoderma/anatomia & histologia , Mesoderma/embriologia , Mesoderma/crescimento & desenvolvimento , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas Morfogenéticas Ósseas/metabolismo
5.
Dev Dyn ; 252(5): 605-628, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36606464

RESUMO

BACKGROUND: Fibrodysplasia ossificans progressiva (FOP), a rare disease characterized by progressive heterotopic ossification of muscle and connective tissues, is caused by autosomal dominant activating mutations in the type I receptor, ACVR1/ALK2. The classic human FOP variant, ACVR1R206H , shows increased bone morphogenetic protein (BMP) signaling and activation by activins. RESULTS: Here, we performed in vivo functional characterization of human ACVR1R206H and orthologous zebrafish Acvr1lR203H using early embryonic zebrafish dorsoventral patterning as a phenotypic readout for receptor activity. Our results showed that human ACVR1R206H and zebrafish Acvr1lR203H exhibit functional differences in early embryonic zebrafish, and that human ACVR1R206H retained its signaling activity in the absence of a ligand-binding domain (LBD). We also showed, for the first time, that zebrafish Acvr2ba/Acvr2bb receptors are required for human ACVR1R206H signaling in early embryonic zebrafish. CONCLUSIONS: Together, these data provide new insight into ACVR1R206H signaling pathways that may facilitate the design of new and effective therapies for FOP patients.


Assuntos
Receptores de Ativinas Tipo I , Embrião não Mamífero , Miosite Ossificante , Ossificação Heterotópica , Animais , Humanos , Receptores de Ativinas Tipo I/genética , Mutação , Transdução de Sinais , Peixe-Zebra , Embrião não Mamífero/metabolismo
6.
J Bone Miner Res ; 37(11): 2058-2076, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36153796

RESUMO

Bone morphogenetic protein (BMP) signaling is critical in skeletal development. Overactivation can trigger heterotopic ossification (HO) as in fibrodysplasia ossificans progressiva (FOP), a rare, progressive disease of massive HO formation. A small subset of FOP patients harboring the causative ACVR1R206H mutation show strikingly mild or delayed-onset HO, suggesting that genetic variants in the BMP pathway could act as disease modifiers. Whole-exome sequencing of one such patient identified BMPR1AR443C and ACVR2AV173I as candidate modifiers. Molecular modeling predicted significant structural perturbations. Neither variant decreased BMP signaling in ACVR1R206H HEK 293T cells at baseline or after stimulation with BMP4 or activin A (AA), ligands that activate ACVR1R206H signaling. Overexpression of BMPR1AR443C in a Tg(ACVR1-R206Ha) embryonic zebrafish model, in which overactive BMP signaling yields ventralized embryos, did not alter ventralization severity, while ACVR2AV173I exacerbated ventralization. Co-expression of both variants did not affect dorsoventral patterning. In contrast, BMPR1A knockdown in ACVR1R206H HEK cells decreased ligand-stimulated BMP signaling but did not affect dorsoventral patterning in Tg(ACVR1-R206Ha) zebrafish. ACVR2A knockdown decreased only AA-stimulated signaling in ACVR1R206H HEK cells and had no effect in Tg(ACVR1-R206Ha) zebrafish. Co-knockdown in ACVR1R206H HEK cells decreased basal and ligand-stimulated signaling, and co-knockdown/knockout (bmpr1aa/ab; acvr2aa/ab) decreased Tg(ACVR1-R206Ha) zebrafish ventralization phenotypes. Our functional studies showed that knockdown of wild-type BMPR1A and ACVR2A could attenuate ACVR1R206H signaling, particularly in response to AA, and that ACVR2AV173I unexpectedly increased ACVR1R206H -mediated signaling in zebrafish. These studies describe a useful strategy and platform for functionally interrogating potential genes and genetic variants that may impact the BMP signaling pathway. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Miosite Ossificante , Ossificação Heterotópica , Animais , Humanos , Miosite Ossificante/genética , Miosite Ossificante/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Sequenciamento do Exoma , Ligantes , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Ossificação Heterotópica/metabolismo , Mutação
7.
Dev Dyn ; 251(10): 1754-1773, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35582941

RESUMO

BACKGROUND: The most-common strategy for zebrafish Cre/lox-mediated lineage labeling experiments combines ubiquitously expressed, lox-based Switch reporter transgenes with tissue-specific Cre or 4-OH-Tamoxifen-inducible CreERT2 driver lines. Although numerous Cre driver lines have been produced, only a few broadly expressed Switch reporters exist in zebrafish and their generation by random transgene integration has been challenging due to position-effect sensitivity of the lox-flanked recombination cassettes. Here, we compare commonly used Switch reporter lines for their recombination efficiency and reporter expression pattern during zebrafish development. RESULTS: Using different experimental setups, we show that ubi:Switch and hsp70l:Switch outperform current generations of the two additional Switch reporters actb2:BFP-DsRed and actb2:Stop-DsRed. Our comparisons also document preferential Cre-dependent recombination of ubi:Switch and hsp70l:Switch in distinct zebrafish tissues at early developmental stages. To investigate what genomic features may influence Cre accessibility and lox recombination efficiency in highly functional Switch lines, we mapped these transgenes and charted chromatin dynamics at their integration sites. CONCLUSIONS: Our data documents the heterogeneity among lox-based Switch transgenes toward informing suitable transgene selection for lineage labeling experiments. Our work further proposes that ubi:Switch and hsp70l:Switch define genomic integration sites suitable for universal transgene or switch reporter knock-in in zebrafish.


Assuntos
Integrases , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Cromatina/metabolismo , Genômica , Integrases/genética , Integrases/metabolismo , Tamoxifeno , Transgenes , Peixe-Zebra/metabolismo
8.
PLoS One ; 14(5): e0216370, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31048899

RESUMO

Actinotrichia are the first exoskeletal elements formed during zebrafish fin development. These rigid fibrils serve as skeletal support for the fin fold and as substrates for mesenchymal cell migration. In the adult intact fins, actinotrichia are restricted to the distal domain of the fin. Following fin amputation, actinotrichia also reform during regeneration. The actinodin gene family codes for structural proteins of actinotrichia. We have previously identified cis-acting regulatory elements in a 2kb genomic region upstream of the first exon of actinodin1, termed 2P, required for tissue-specific expression in the fin fold ectoderm and mesenchyme during embryonic development. Indeed, 2P contains an ectodermal enhancer in a 150bp region named epi. Deletion of epi from 2P results in loss of ectodermal-specific activity. In the present study, we sought to further characterize the activity of these regulatory sequences throughout fin development and during adult fin regeneration. Using a reporter transgenic approach, we show that a site within the epi region, termed epi3, contains an early mesenchymal-specific repressor. We also show that the larval fin fold ectodermal enhancer within epi3 remains functional in the basal epithelial layer during fin regeneration. We show that the first non-coding exon and first intron of actinodin1 contains a transcriptional enhancer and an alternative promoter that are necessary for the persistence of reporter expression reminiscent of actinodin1 expression during adulthood. Altogether, we have identified cis-acting regulatory elements that are required for tissue-specific expression as well as full recapitulation of actinodin1 expression during adulthood. Furthermore, the characterization of these elements provides us with useful molecular tools for the enhancement of transgene expression in adulthood.


Assuntos
Nadadeiras de Animais/fisiologia , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regeneração/fisiologia , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/citologia , Elementos Facilitadores Genéticos/fisiologia , Éxons/fisiologia , Íntrons/fisiologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
PLoS One ; 13(2): e0192500, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29420592

RESUMO

The evolution of the tetrapod limb involved an expansion and elaboration of the endoskeletal elements, while the fish fin rays were lost. Loss of fin-specific genes, and regulatory changes in key appendicular patterning genes have been identified as mechanisms of limb evolution, however their contributions to cellular organization and tissue differences between fins and limbs remains poorly understood. During early larval fin development, hoxa13a/hoxd13a-expressing fin fold mesenchyme migrate through the median and pectoral fin along actinotrichia fibrils, non-calcified skeletal elements crucial for supporting the fin fold. Fin fold mesenchyme migration defects have previously been proposed as a mechanism of fin dermal bone loss during tetrapod evolution as it has been shown they contribute directly to the fin ray osteoblast population. Using the nitroreductase/metronidazole system, we genetically ablated a subset of hoxa13a/hoxd13a-expressing fin fold mesenchyme to assess its contributions to fin development. Following the ablation of fin fold mesenchyme in larvae, the actinotrichia are unable to remain rigid and the median and pectoral fin folds collapse, resulting in a reduced fin fold size. The remaining cells following ablation are unable to migrate and show decreased actinodin1 mesenchymal reporter activity. Actinodin proteins are crucial structural component of the actinotrichia. Additionally, we show a decrease in hoxa13a, hoxd13a, fgf10a and altered shha, and ptch2 expression during larval fin development. A continuous treatment of metronidazole leads to fin ray defects at 30dpf. Fewer rays are present compared to stage-matched control larvae, and these rays are shorter and less defined. These results suggest the targeted hoxa13a/hoxd13a-expressing mesenchyme contribute to their own successful migration through their contributions to actinotrichia. Furthermore, due to their fate as fin ray osteoblasts, we propose their initial ablation, and subsequent disorganization produces truncated fin dermal bone elements during late larval stages.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento , Animais , Regulação da Expressão Gênica no Desenvolvimento , Larva/efeitos dos fármacos , Mesoderma/crescimento & desenvolvimento , Metronidazol/farmacologia , Peixe-Zebra/genética
10.
Int J Dev Biol ; 62(11-12): 705-716, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30604840

RESUMO

The evolution of tetrapod limbs from paired fish fins comprised major changes to the appendicular dermal and endochondral skeleton. Fish fin rays were lost, and the endochondral bone was modified and elaborated to form three distinct segments common to all tetrapod limbs: the stylopod, the zeugopod and the autopod. Identifying the molecular mechanisms that contributed to these morphological changes presents a unique insight into our own evolutionary history. This review first summarizes previously identified cis-acting regulatory elements for the 5'HoxA/D genes and actinodin1 that were tested using transgenic swap experiments between fish and tetrapods. Conserved regulatory networks provide evidence for a deep homology between distal fin structures and the autopod, while diverging regulatory strategies highlight potential molecular mechanisms that contributed to the fin-to-limb transition. Next, we summarize studies that performed functional analysis to recapitulate fish-tetrapod diverging regulatory strategies and then discuss their potential morphological consequences during limb evolution. Finally, we also discuss here some of the advantages and disadvantages of using zebrafish to study molecular and morphological changes during the fin-to-limb transition.


Assuntos
Nadadeiras de Animais/fisiologia , Evolução Biológica , Extremidades/fisiologia , Regulação da Expressão Gênica , Genes Homeobox , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Elementos Reguladores de Transcrição
11.
Nature ; 539(7627): 89-92, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27706137

RESUMO

The fin-to-limb transition represents one of the major vertebrate morphological innovations associated with the transition from aquatic to terrestrial life and is an attractive model for gaining insights into the mechanisms of morphological diversity between species. One of the characteristic features of limbs is the presence of digits at their extremities. Although most tetrapods have limbs with five digits (pentadactyl limbs), palaeontological data indicate that digits emerged in lobed fins of early tetrapods, which were polydactylous. How the transition to pentadactyl limbs occurred remains unclear. Here we show that the mutually exclusive expression of the mouse genes Hoxa11 and Hoxa13, which were previously proposed to be involved in the origin of the tetrapod limb, is required for the pentadactyl state. We further demonstrate that the exclusion of Hoxa11 from the Hoxa13 domain relies on an enhancer that drives antisense transcription at the Hoxa11 locus after activation by HOXA13 and HOXD13. Finally, we show that the enhancer that drives antisense transcription of the mouse Hoxa11 gene is absent in zebrafish, which, together with the largely overlapping expression of hoxa11 and hoxa13 genes reported in fish, suggests that this enhancer emerged in the course of the fin-to-limb transition. On the basis of the polydactyly that we observed after expression of Hoxa11 in distal limbs, we propose that the evolution of Hoxa11 regulation contributed to the transition from polydactyl limbs in stem-group tetrapods to pentadactyl limbs in extant tetrapods.


Assuntos
Evolução Biológica , Extremidades/anatomia & histologia , Proteínas de Homeodomínio/metabolismo , Vertebrados/anatomia & histologia , Vertebrados/genética , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/metabolismo , Animais , Elementos Facilitadores Genéticos/genética , Extinção Biológica , Feminino , Íntrons/genética , Camundongos , RNA Antissenso/biossíntese , RNA Antissenso/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...