Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 448(1): 21-33, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22909387

RESUMO

Oct4 and Sox2 are two essential transcription factors that co-regulate target genes for the maintenance of pluripotency. However, it is unclear whether they interact prior to DNA binding or how the target sites are accessed in the nucleus. By generating fluorescent protein fusions of Oct4 and Sox2 that are functionally capable of producing iPSCs (induced pluripotent stem cells), we show that their interaction is dependent on the presence of cognate DNA-binding elements, based on diffusion time, complex formation and lifetime measurements. Through fluorescence correlation spectroscopy, the levels of Oct4 and Sox2 in the iPSCs were quantified in live cells and two diffusion coefficients, corresponding to free and loosely bound forms of the protein, were distinguished. Notably, the fraction of slow-diffusing molecules in the iPSCs was found to be elevated, similar to the profile in embryonic stem cells, probably due to a change in the nuclear milieu during reprogramming. Taken together, these findings have defined quantitatively the amount of proteins pertinent to the pluripotent state and revealed increased accessibility to the underlying DNA as a mechanism for Oct4 and Sox2 to find their target binding sites and interact, without prior formation of heterodimer complexes.


Assuntos
DNA/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Células CHO , Cricetinae , DNA Complementar/genética , Difusão , Ensaio de Desvio de Mobilidade Eletroforética , Fibroblastos/citologia , Recuperação de Fluorescência Após Fotodegradação , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Imunoprecipitação , Camundongos , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Fluorescência , Transfecção
2.
Glia ; 58(7): 870-88, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20155821

RESUMO

The zebrafish has become a new model for adult neurogenesis, owing to its abundant neurogenic areas in most brain subdivisions. Radial glia-like cells, actively proliferating cells, and label-retaining progenitors have been described in these areas. In the telencephalon, this complexity is enhanced by an organization of the ventricular zone (VZ) in fast and slow-dividing domains, suggesting the existence of heterogeneous progenitor types. In this work, we studied the expression of various transgenic or immunocytochemical markers for glial cells (gfap:gfp, cyp19a1b:gfp, BLBP, and S100beta), progenitors (nestin:gfp and Sox2), and neuroblasts (PSA-NCAM) in cycling progenitors of the adult zebrafish telencephalon (identified by expression of proliferating cell nuclear antigen (PCNA), MCM5, or bromodeoxyuridine incorporation). We demonstrate the existence of distinct populations of dividing cells at the adult telencephalic VZ. Progenitors of the overall slow-cycling domains express high levels of Sox2 and nestin:gfp as well as all glial markers tested. In contrast, domains with an overall fast division rate are characterized by low or missing expression of glial markers. PCNA-positive cells in fast domains further display a morphology distinct from radial glia and co-express PSA-NCAM, suggesting that they are early neuronal precursors. In addition, the VZ contains cycling progenitors that express neither glial markers nor nestin:gfp, but are positive for Sox2 and PSA-NCAM, identifying them as committed neuroblasts. On the basis of the marker gene expression and distinct cell morphologies, we propose a classification for the dividing cell states at the zebrafish adult telencephalic VZ.


Assuntos
Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Células-Tronco/citologia , Telencéfalo/citologia , Peixe-Zebra/anatomia & histologia , Animais , Animais Geneticamente Modificados , Biomarcadores/análise , Biomarcadores/metabolismo , Divisão Celular/fisiologia , Proliferação de Células , Proteínas de Filamentos Intermediários/análise , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Ventrículos Laterais , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Molécula L1 de Adesão de Célula Nervosa/análise , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição SOX/análise , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Ácidos Siálicos/análise , Ácidos Siálicos/genética , Ácidos Siálicos/metabolismo , Células-Tronco/classificação , Células-Tronco/fisiologia , Telencéfalo/fisiologia , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/análise , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Cell Adh Migr ; 3(4): 412-24, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19535895

RESUMO

The central nervous system (CNS) is a large network of interconnecting and intercommunicating cells that form functional circuits. Disease and injury of the CNS are prominent features of the healthcare landscape. There is an urgent unmet need to generate therapeutic solutions for CNS disease/injury. To increase our understanding of the CNS we need to generate cellular models that are experimentally tractable. Neural stem cells (NSCs), cells that generate the CNS during embryonic development, have been identified and propagated in vitro. To develop NSCs as a cellular model for the CNS we need to understand more about their genetics and cell biology. In particular, we need to define the mechanisms of self-renewal, proliferation and differentiation--i.e. NSC behavior. The analysis of pluripotency of embryonic stem cells through mapping regulatory networks of transcription factors has proven to be a powerful approach to understanding embryonic development. Here, we discuss the role of transcription factors in NSC behavior.


Assuntos
Diferenciação Celular/fisiologia , Neurônios/citologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proliferação de Células , Humanos
4.
Dev Dyn ; 238(2): 475-86, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19161226

RESUMO

Adult neurogenesis arises from niches that harbor neural stem cells (NSC). Although holding great promise for regenerative medicine, the identity of NSC remains elusive. In mammals, a key attribute of NSC is the expression of the filamentous proteins glial fibrillary acidic protein (GFAP) and NESTIN. To assess whether these two markers are relevant in the fish model, two transgenic zebrafish lines for gfap and nestin were generated. Analysis of adult brains showed that the fusion GFAP-green fluorescent protein closely mimics endogenous GFAP, while the nestin transgene recapitulates nestin at the ventricular zones. Cells expressing the two reporters display radial glial morphology, colocalize with the NSC marker Sox2, undergo proliferation, and are capable of self-renewal within the matrix of distinct thickness in the telencephalon. Together, these two transgenic lines reveal a conserved feature of putative NSC in the adult zebrafish brain and provide a means for the identification and manipulation of these cells in vivo.


Assuntos
Encéfalo/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Células-Tronco/citologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Genes Reporter , Proteína Glial Fibrilar Ácida/genética , Proteínas de Filamentos Intermediários/genética , Proteínas do Tecido Nervoso/genética , Nestina , Neurônios/metabolismo , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Fatores de Transcrição SOXB1/genética , Células-Tronco/metabolismo
5.
Dev Biol ; 295(1): 278-93, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16828638

RESUMO

Our understanding of the cellular and molecular mechanisms underlying the adult neural stem cell state remains fragmentary. To provide new models on this issue, we searched for stem cells in the adult brain of the zebrafish. Using BrdU tracing and immunodetection of cell-type-specific markers, we demonstrate that the adult zebrafish telencephalon contains self-renewing progenitors, which show features of adult mammalian neural stem cells but distribute along the entire dorso-ventral extent of the telencephalic ventricular zone. These progenitors give rise to newborn neurons settling close to the ventricular zone within the telencephalon proper. They have no equivalent in mammals and therefore constitute a new model of adult telencephalic neural stem cells. In addition, progenitors from the ventral subpallium generate rapidly dividing progenitors and neuroblasts that reach the olfactory bulb (OB) via a rostral migratory stream and differentiate into GABAergic and TH-positive neurons. These ventral progenitors are comparable to the mammalian neural stem cells of the subependymal zone. Interestingly, dorsal and ventral progenitors in the adult telencephalon express a different combination of transcription factors than their embryonic counterparts. In the case of neurogenin1, this is due to the usage of different enhancer elements. Together, our results highlight the conserved and unique phylogenic and ontogenic features of adult neurogenesis in the zebrafish telencephalon and open the way to the identification of adult neural stem cell characters in cross-species comparative studies.


Assuntos
Neurônios/citologia , Telencéfalo/citologia , Peixe-Zebra , Fatores Etários , Animais , Movimento Celular , Proliferação de Células , Neurônios/fisiologia , Bulbo Olfatório/citologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Telencéfalo/metabolismo , Telencéfalo/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Eur J Neurosci ; 21(6): 1758-62, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15845104

RESUMO

The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces selective loss of dopaminergic neurons in the mammalian midbrain, eliciting symptoms characteristic of Parkinson's disease. By exploiting the advantages of zebrafish embryos, we report here that dopaminergic neurons in this species are specifically perturbed when exposed to MPTP. In contrast to mammals, the zebrafish does not possess a midbrain dopaminergic system. Instead, the main population of neurons expressing the dopamine transporter is located in the posterior tuberculum of the diencephalon. Exposure of embryos to MPTP led to a pronounced reduction in the number of dopaminergic cells in the diencephalon. This effect can be reversed by deprenyl, a specific inhibitor of monoamine oxidase B that catalyses the conversion of MPTP to its active metabolite, MPP+. Similarly, direct treatment of embryos with MPP+ abolished the diencephalic dopaminergic neurons. These larvae also demonstrated behavioural defects in swimming responses. Thus, dopaminergic neurons in the posterior tuberculum of the zebrafish may be homologous to the midbrain dopaminergic system of mammals. In addition, the mechanism behind the loss of dopaminergic neurons following pharmacological perturbation may be conserved among vertebrates and suggest that the zebrafish can be used as a convenient and economical system to study the pathogenesis of Parkinson's disease and for testing potential therapeutic strategies.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Dopamina/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Animais , Suscetibilidade a Doenças/induzido quimicamente , Embrião não Mamífero/metabolismo , Intoxicação por MPTP/metabolismo , Atividade Motora/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
7.
Development ; 131(22): 5627-37, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15496438

RESUMO

The telencephalon shows vast morphological variations among different vertebrate groups. The transcription factor neurogenin1 (ngn1) controls neurogenesis in the mouse pallium and is also expressed in the dorsal telencephalon of the evolutionary distant zebrafish. The upstream regions of the zebrafish and mammalian ngn1 loci harbour several stretches of conserved sequences. Here, we show that the upstream region of zebrafish ngn1 is capable of faithfully recapitulating endogenous expression in the zebrafish and mouse telencephalon. A single conserved regulatory region is essential for dorsal telencephalic expression in the zebrafish, and for expression in the dorsal pallium of the mouse. However, a second conserved region that is inactive in the fish telencephalon is necessary for expression in the lateral pallium of mouse embryos. This regulatory region, which drives expression in the zebrafish diencephalon and hindbrain, is dependent on Pax6 activity and binds recombinant Pax6 in vitro. Thus, the regulatory elements of ngn1 appear to be conserved among vertebrates, with certain differences being incorporated in the utilisation of these enhancers, for the acquisition of more advanced features in amniotes. Our data provide evidence for the co-option of regulatory regions as a mechanism of evolutionary diversification of expression patterns, and suggest that an alteration in Pax6 expression was crucial in neocortex evolution.


Assuntos
Sequência Conservada/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Elementos Facilitadores Genéticos/genética , Proteínas do Olho , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Especificidade de Órgãos , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras , Elementos de Resposta/genética , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Alinhamento de Sequência , Telencéfalo/citologia , Telencéfalo/embriologia , Telencéfalo/metabolismo , Transcrição Gênica/genética , Transgenes/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
8.
Trends Genet ; 20(3): 155-62, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15036809

RESUMO

Situated at the ventral-most part of the vertebrate neural tube, the floor plate (FP) is an important signalling centre that controls the regional differentiation of neurons in the nervous system. It secretes guidance molecules that direct ventrally navigating axons crucial for the correct wiring of neuronal circuits. Although the function of the FP is well-conserved from fish to humans, discrepancies exists with respect to both the signalling system involved in FP induction, and the origin of the FP in various vertebrate species. Recent findings from the embryos of zebrafish, chicken and mouse provide insights that reconcile previous results and suggest common themes in vertebrate FP specification.


Assuntos
Axônios/fisiologia , Embrião de Galinha , Peixes/embriologia , Variação Genética , Camundongos Mutantes/embriologia , Peixe-Zebra/embriologia , Animais , Diferenciação Celular/fisiologia , Humanos , Camundongos , Neurônios/citologia , Neurônios/fisiologia
9.
Gene Expr Patterns ; 3(4): 463-6, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12915313

RESUMO

Nitric oxide synthase catalyzes the production of nitric oxide, a multifunctional signaling molecule that affects diverse aspects of animal physiology such as cell proliferation, differentiation, neurotransmission and apoptosis. Here, we report the cloning and expression pattern of the zebrafish nnos. This gene was mapped to zebrafish linkage group 5. The spatial and temporal expression pattern of nnos in embryonic zebrafish was analyzed by whole mount in situ hybridization. nnos is widely expressed in the embryonic nervous system. Expression of zebrafish nnos appeared at 16 hours post-fertilization in the hypothalamus and by 3 days post-fertilization was present in discrete locations in the central nervous system as well as the enteric nervous system. Some nnos-positive cells were mapped to specific locations in the central nervous system using tyrosine hydroxylase as a specific marker indicating that nnos transcripts were present in the olfactory bulb, anterior diencephalon, posterior hypothalamus and anterior hindbrain.


Assuntos
Sistema Nervoso Entérico/embriologia , Regulação Enzimológica da Expressão Gênica , Hipotálamo/embriologia , Óxido Nítrico Sintase/metabolismo , Peixe-Zebra/embriologia , Animais , Mapeamento Cromossômico , Clonagem Molecular , Sistema Nervoso Entérico/enzimologia , Hipotálamo/enzimologia , Hibridização In Situ , Dados de Sequência Molecular , Óxido Nítrico Sintase Tipo I , Tirosina 3-Mono-Oxigenase/metabolismo
10.
Mol Cell Neurosci ; 22(4): 501-15, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12727446

RESUMO

Several signaling pathways have been implicated in the development of dopaminergic and serotonergic neurons. Here, we analyzed the formation of noradrenergic (NAergic) cells in the locus coeruleus (LC) of zebrafish. In the sonic hedgehog (shh) mutant, cells positive for tyrosine hydroxylase, a marker for putative NAergic cells in the LC were reduced. Similarly, the inhibition of translation of all hh genes and the perturbation of Shh signaling by forskolin resulted in a decrease in the number of cells. Conversely, when SHH was overexpressed, an increase in number was observed. Thus, Shh is involved in maintaining the appropriate number of cells in the LC. While elevated levels of bone morphogenetic protein 4 (BMP4) did not attenuate tyrosine hydroxylase-positive cells, exogenous fibroblast growth factor 8 (FGF8) rescued NAergic neurons in the acerebellar (ace) mutant, providing direct in vivo evidence that Fgf8 is required for the induction of NAergic neurons in the LC.


Assuntos
Embrião não Mamífero/embriologia , Fatores de Crescimento de Fibroblastos/deficiência , Locus Cerúleo/embriologia , Neurônios/metabolismo , Norepinefrina/biossíntese , Proteínas Serina-Treonina Quinases , Receptores de Fatores de Crescimento , Transativadores/deficiência , Peixe-Zebra/embriologia , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Animais , Apoptose/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I , Sobrevivência Celular/genética , Regulação para Baixo/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Fator 8 de Crescimento de Fibroblasto , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Hedgehog , Locus Cerúleo/citologia , Locus Cerúleo/metabolismo , Mutação/genética , Neurônios/citologia , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Inibidores da Síntese de Proteínas/farmacologia , Transativadores/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Regulação para Cima/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Mech Dev ; 113(1): 99-102, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11900982

RESUMO

Proteins of the Extramacrochaetae and Id subfamily of Helix-Loop-Helix (HLH) proteins are negative regulators of bHLH transcription factors. We cloned a cDNA from zebrafish which encodes a member of the id3 subfamily. High levels of transcripts accumulated in the germ ring and in the embryonic shield. Towards the end of gastrulation, Id3 was highly expressed in the anterior prechordal plate and hypoblast. At later stages, id3 expression was turned on and off in a large variety of tissues within short periods of time. These include the lateral mesoderm, the cornea, the lens, the brain, the neural crest, the retina and the fins.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Neoplasias , Fatores de Transcrição/biossíntese , Sequência de Aminoácidos , Animais , Northern Blotting , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/genética , Sequências Hélice-Alça-Hélice , Imuno-Histoquímica , Proteínas Inibidoras de Diferenciação , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/metabolismo , Retina/embriologia , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Distribuição Tecidual , Fatores de Transcrição/genética , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...