Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(16): 23647-23663, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427169

RESUMO

Methylene blue (MB) was regarded as a highly toxic and hazardous substance owing to its irreparable hazard and deplorable damage on the ecosystem and the human body. The treatment of this colorant wastewater appeared to be one of the towering challenges in wastewater treatment. In this study, a microbial fuel cell coupled with constructed wetland (CW-MFC) with effective MB elimination and its energy recuperation concurrently based on the incorporation of carbide lime as a substrate in a new copper oxide-loaded on carbon cloth (CuO/CC) cathode system was studied. The crucial influencing parameters were also delved, and the MB degradation and chemical oxygen demand (COD) removal efficiencies were correspondingly incremented by 97.3% and 89.1% with maximum power output up to 74.1 mW m-2 at optimal conditions (0.2 g L-1 carbide lime loading and 500 Ω external resistance). The carbide lime with high calcium ion content was greatly conducive for the enrichment of critical microorganism and metabolic activities. The relative abundances of functional bacteria including Proteobacteria and Actinobacteriota were vividly increased. Moreover, the impressive results obtained in printed ink wastewater treatment with a COD removal efficiency of 81.3% and a maximum power density of 58.2 mW m-2, which showcased the potential application of CW-MFC.


Assuntos
Fontes de Energia Bioelétrica , Compostos de Cálcio , Humanos , Eletricidade , Áreas Alagadas , Ecossistema , Cobre , Óxidos , Eletrodos , Bactérias
2.
Environ Res ; : 118647, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38460666

RESUMO

In this work, the self-assembled SrTiO3 (STO) microstructures were synthesized via a facile one-step solvothermal method. As the solvothermal temperature increased from 140 °C to 200 °C, the STO changed from a flower-like architecture to finally an irregularly aggregated flake-like morphology. The photocatalytic performance of as-synthesized samples was assessed through the degradation of rhodamine B (RhB) and malachite green (MG) under simulated solar irradiation. The results indicated that the photocatalytic performance of STO samples depended on their morphology, in which the hierarchical flower-like STO synthesized at 160 °C demonstrated the highest photoactivities. The photocatalytic enhancement of STO-160 was benefited from its large surface area and mesoporous configuration, hence facilitating the presence of more reactive species and accelerating the charge separation. Moreover, the real-world practicality of STO-160 photocatalysis was examined via the real printed ink wastewater-containing RhB and MG treatment. The phytotoxicity analyses demonstrated that the photocatalytically treated wastewater increased the germination of mung bean seeds, and the good reusability of synthesized STO-160 in photodegradation reaction also promoted its application in practical scenarios. This work highlights the promising potential of tailored STO microstructures for effective environmental remediation applications.

3.
Environ Pollut ; 346: 123648, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408504

RESUMO

Municipal wastewater is ubiquitously laden with myriad pollutants discharged primarily from a combination of domestic and industrial activities. These heterogeneous pollutants are threating the natural environments when the traditional activated sludge system fails sporadically to reduce the pollutants' toxicities. Besides, the activated sludge system is very energy intensive, bringing conundrums for decarbonization. This research endeavoured to employ Chlorella vulgaris sp. In converting pollutants from municipal wastewater into hydrogen via alternate light and dark fermentative process. The microalgae in attached form onto 1 cm3 of polyurethane foam cubes were adopted in optimizing light intensity and photoperiod during the light exposure duration. The highest hydrogen production was recorded at 52 mL amidst the synergistic light intensity and photoperiod of 200 µmolm-2s-1 and 12:12 h (light:dark h), respectively. At this lighting condition, the removals of chemical oxygen demand (COD) and ammoniacal nitrogen were both achieved at about 80%. The sustainability of microalgal fermentative performances was verified in recyclability study using similar immobilization support material. There were negligible diminishments of hydrogen production as well as both COD and ammoniacal nitrogen removals after five cycles, heralding inconsequential microalgal cells' washout from the polyurethane support when replacing the municipal wastewater medium at each cycle. The collected dataset was finally modelled into enhanced Monod equation aided by Python software tool of machine learning. The derived model was capable to predict the performances of microalgae to execute the fermentative process in producing hydrogen while subsisting municipal wastewater at arbitrary photoperiod. The enhanced model had a best fitting of R2 of 0.9857 as validated using an independent dataset. Concisely, the outcomes had contributed towards the advancement of municipal wastewater treatment via microalgal fermentative process in producing green hydrogen as a clean energy source to decarbonize the wastewater treatment facilities.


Assuntos
Compostos de Amônio , Chlorella vulgaris , Microalgas , Águas Residuárias , Esgotos , Fotoperíodo , Nitrogênio , Hidrogênio , Biomassa
4.
Chemosphere ; 344: 140402, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838031

RESUMO

Environmental conservation and energy scarcity have become two core challenges with the ever-increasing advancement of industry, particularly chemical energy rich wastewater comprising refractory organics and pathogenic microbes. Here, a multifunctional photocatalytic fuel cell (PFC) was devised using NiFe2O4 nanoparticle-loaded on pine tree-like ZnO/Zn (NiFe2O4/ZnO/Zn) photoanode and CuO/Cu2O nanorods-loaded on Cu (CuO/Cu2O/Cu) cathode for extracting electricity upon wastewater treatment. When fed with Rhodamine B (RhB) dyestuff, the NiFe2O4/ZnO/Zn-PFC provided the maximum power density (Pmax) of 0.539 mW cm-2 upon visible light irradiation with an average RhB degradation of 85.2%, which were 2.8 and 2.7 times higher than ZnO/Zn, respectively. The remarkable enhanced NiFe2O4/ZnO/Zn-PFC performance was owing to the synergistic effect of pine tree-like structure and Z-scheme heterostructure. The pine tree-like with high surface area was not only for effective harnessing photon energies but also provided more directional routes for rapid segregation and transport of carriers and higher interface contacting areas with electrolyte. Through a series of systematic characterizations, the Z-scheme heterostructure mechanism of the system and organics degradation pathway were also speculated. Additionally, the performance of the NiFe2O4/ZnO/Zn-PFC in industry printing wastewater showed Pmax of 0.600 mW cm-2, which was considerably impressive as real wastewater was challenging to accomplish. The phytotoxicity outcome also manifested that the comprehensive toxicity of RhB was eradicated after PFC treatment. Lastly, the excellent recyclability and the pronounced bactericidal effect towards Escherichia coli and Staphylococcus aureus were other attributions which enabled the NiFe2O4/ZnO/Zn-PFC for possible practical application.


Assuntos
Nanotubos , Óxido de Zinco , Óxido de Zinco/química , Águas Residuárias , Luz , Eletrodos
5.
Environ Sci Pollut Res Int ; 30(42): 96272-96289, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37566326

RESUMO

Attributable to the prosperous production growth of palm oil in Malaysia, the generated palm oil mill effluent (POME) poses a high threat owing to its highly polluted characteristic. Urged by the escalating concern of environmental conservation, POME pollution abatement and potential energy recovery from the effluent are flagged up as a research topic of interest. In this study, a cutting-edge photocatalytic fuel cell (PFC) system with employment of ZnO/Zn nanorod array (NRA) photoanode, CuO/Cu cathode, and persulfate (PS) oxidant was successfully designed to improve the treatment of POME and simultaneous energy production. The photoelectrodes were fabricated and characterized by field emission scanning electron microscopy with energy (FESEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Brunauer, Emmett, and Teller analysis (BET). Owing to the properties of strong oxidant of PS, the proposed PFC/PS system has exhibited exceptional performance, attaining chemical oxygen demand (COD) removal efficiency of 96.2%, open circuit voltage (Voc) of 740.0 mV, short circuit current density (Jsc) of 146.7 µA cm-2, and power density (Pmax) of 35.6 µW cm-2. The pre-eminent PFC/PS system performance was yielded under optimal conditions of 2.5 mM of persulfate oxidant, POME dilution factor of 1:20, and natural solution pH of 8.51. Subsequently, the postulated photoelectrocatalytic POME treatment mechanism was elucidated by the radical scavenging study and Mott-Schottky (M-S) analysis. The following recycling test affirmed the stability and durability of the photoanode after four continuous repetition usages while the assessed electrical energy efficiency revealed the economic viability of PFC system serving as a post-treatment for abatement of POME. These findings contributed toward enhancing the sustainability criteria and economic viability of palm oil by adopting sustainable and efficient POME post-treatment technology.


Assuntos
Eletricidade , Resíduos Industriais , Óleo de Palmeira/análise , Resíduos Industriais/análise , Malásia , Análise da Demanda Biológica de Oxigênio , Óleos de Plantas/química , Eliminação de Resíduos Líquidos
6.
J Hazard Mater ; 442: 130031, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179629

RESUMO

This study focuses on the potential capability of numerous machine learning models, namely CatBoost, GradientBoosting, HistGradientBoosting, ExtraTrees, XGBoost, DecisionTree, Bagging, light gradient boosting machine (LGBM), GaussianProcess, artificial neural network (ANN), and light long short-term memory (LightLSTM). These models were investigated to predict the photocatalytic degradation of malachite green from wastewater using various NM-BiFeO3 composites. A comprehensive databank of 1200 data points was generated under various experimental conditions. The ten input variables selected were the catalyst type, reaction time, light intensity, initial concentration, catalyst loading, solution pH, humic acid concentration, anions, surface area, and pore volume of various photocatalysts. The MG dye degradation efficiency was selected as the output variable. An evaluation of the performance metrics suggested that the CatBoost model, with the highest test coefficient of determination (0.99) and lowest mean absolute error (0.64) and root-mean-square error (1.34), outperformed all other models. The CatBoost model showed that the photocatalytic reaction conditions were more important than the material properties. The modeling results suggested that the optimized process conditions were a light intensity of 105 W, catalyst loading of 1.5 g/L, initial MG dye concentration of 5 mg/L and solution pH of 7. Finally, the implications and drawbacks of the current study were stated in detail.


Assuntos
Bismuto , Águas Residuárias , Substâncias Húmicas , Aprendizado de Máquina
7.
Chemosphere ; 309(Pt 1): 136626, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36181856

RESUMO

Endocrine disrupting compounds (EDCs) are extensively found in the environment and severely impacting human health. In addressing this issue, the beta-cyclodextrin crosslinked citric acid (BCD-CA) had been previously employed in membrane-protected micro-solid phase extraction for sequestering EDCs from water medium; and the findings revealed that BCD-CA possessed a selectivity property. On that account, the potential of BCD-CA towards competitive adsorption of selected EDCs was investigated in terms of adsorption mechanism and selectivity property. Factors that affected the removal efficiencies such as sample pH, sorbent dosage, contact time and initial concentration were evaluated. The characterization results revealed that the carbon percentage of BCD-CA had increased by 2.04%, while the hydrogen percentage had reduced by 1.83%, signifying the successful crosslinking of BCD-CA. Besides, the amount of active BCD was calculated to be 3.2 × 10-7 mol, while the amount of carboxyl group was 2.48 × 10-5 mol per 4 mg of BCD-CA. Moreover, BCD-CA was stable in an aqueous medium with the zeta potential obtained at -36.5 mV and had a high-water retention capacity (∼150%). The competitive adsorption mechanism by BCD-CA with EDCs followed the pseudo-second-order kinetics and Freundlich isotherm, suggesting that the adsorption process was dominated by chemisorption on the heterogeneous surface of the adsorbent. Thermodynamic results revealed that adsorption of 4-tert-octylphenol had the most negative ΔG value, indicating most favorable to be adsorbed by BCD-CA as opposed to triclosan and bisphenol A, which was coherent with the apparent formation constant results. These unique properties manifested the practicality of BCD-CA as a selective adsorbent to detect and remove EDCs from the water medium.


Assuntos
Disruptores Endócrinos , Triclosan , beta-Ciclodextrinas , Humanos , Polipropilenos , Ácido Cítrico , Extração em Fase Sólida , beta-Ciclodextrinas/química , Água/química , Carbono , Hidrogênio
8.
Environ Res ; 212(Pt C): 113394, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35537501

RESUMO

The co-existence of organic contaminants and heavy metals including 4-chlorophenol (4-CP) and Cr(VI) in aquatic system have become a challenging task in the wastewater treatment. Herein, the synchronous photocatalytic decomposition of 4-CP and Cr(VI) over new Z-scheme CoFe2O4/P-BiOBr heterojunction nanocomposites were revealed. In this work, the nanocomposites were successfully developed via a surfactant-free hydrothermal method. The heterojunction interface was created by decorating magnetic CoFe2O4 nanoparticles onto P-BiOBr nanosheets. The as-fabricated CoFe2O4/P-BiOBr nanocomposites substantially improved the synchronous decomposition of 4-CP and Cr(VI) compared to the single-phase component samples under visible light irradiation. Particularly, the 30-CoFe2O4/P-BiOBr nanocomposite displayed the best photocatalytic performance, which decomposed 95.6% 4-CP and 100% Cr(VI) within 75 min. The photocatalytic improvement was assigned to the Z-scheme heterojunction assisted charge migration between CoFe2O4 and P-BiOBr, and the acceleration of charge carrier separation was validated by the findings of charge dynamics measurements. The harmful 4-CP was photodegraded into smaller organics whereas the Cr(VI) was photoreduced into Cr(III) after 30-CoFe2O4/P-BiOBr photocatalysis, and the good recyclability of fabricated nanocomposite in photocatalytic reaction also showed promising potential for practical applications in environmental remediation. Finally, the radical quenching tests confirmed that there existed the Z-scheme path of charge migration in CoFe2O4/P-BiOBr nanocomposite, which was the mechanism responsible for its high photoactivity.

9.
Chemosphere ; 287(Pt 4): 132384, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34597645

RESUMO

BiFeO3 nanoparticle decorated on flower-like ZnO (BiFeO3/ZnO) was fabricated through a facile hydrothermal-reflux combined method. This material was utilized as a composite photocathode for the first time in microbial fuel cell (MFC) to reduce the copper ion (Cu2+) and power generation concomitantly. The resultant BiFeO3/ZnO-based MFC displayed distinct photoelectrocatalytic activities when different weight percentages (wt%) BiFeO3 were used. The 3 wt% BiFeO3/ZnO MFC achieved the maximum power density of 1.301 W m-2 in the catholyte contained 200 mg L-1 of Cu2+ and the power density was greatly higher than those pure ZnO and pure BiFeO3 photocathodes. Meanwhile, the MFC exhibited 90.7% removal of Cu2+ within 6 h under sunlight exposure at catholyte pH 4. The addition of BiFeO3 nanoparticles not only manifested outstanding capability in harvesting visible light, but also facilitated the formation of Z-scheme BiFeO3/ZnO heterojunction structure to induce the charge carrier transfer along with enhanced redox abilities for the cathodic reduction. The pronounced electrical output and Cu2+ reduction efficiencies can be realized through the synergistic cooperation between the bioanode and BiFeO3/ZnO photocathode in the MFC. Furthermore, the developed BiFeO3/ZnO composite presented a good stability and reusability of photoelectrocatalytic activity up to five cyclic runs.


Assuntos
Fontes de Energia Bioelétrica , Óxido de Zinco , Cobre , Eletricidade , Eletrodos
10.
J Hazard Mater ; 423(Pt A): 126995, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34482076

RESUMO

The high investment cost required by modern treatment technologies of hazardous sewage sludge such as incineration and anaerobic digestion have discouraged their application by many developing countries. Hence, this review elucidates the status, performances and limitations of two low-cost methods for biological treatment of hazardous sewage sludge, employing vermicomposting and black soldier fly larvae (BSFL). Their performances in terms of carbon recovery, nitrogen recovery, mass reduction, pathogen destruction and heavy metal stabilization were assessed alongside with the mature anaerobic digestion method. It was revealed that vermicomposting and BSFL were on par with anaerobic digestion for carbon recovery, nitrogen recovery and mass reduction. Thermophilic anaerobic digestion was found superior in pathogen destruction because of its high operational temperature. Anaerobic digestion also had proven its ability to stabilize heavy metals, but no conclusive finding could confirm similar application from vermicomposting or BSFL treatment. However, the addition of co-substrates or biochar during vermicomposting or BSFL treatment may show synergistic effects in stabilizing heavy metals as demonstrated by anaerobic digestion. Moreover, vermicomposting and BSFL valorization had manifested their potentialities as the low-cost alternatives for treating hazardous sewage sludge, whilst producing value-added feedstock for biochemical industries.


Assuntos
Compostagem , Metais Pesados , Anaerobiose , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos
11.
J Hazard Mater ; 409: 124455, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33168319

RESUMO

A novel sequential flow baffled microalgal-bacterial (SFB-AlgalBac) photobioreactor was designed to cater for the synergistic interactions between microalgal and bacterial consortia to enhance nitrogen assimilation into microalgal biomass from nutrient-rich wastewater medium. The performance of the SFB-AlgalBac photobioreactor was found to be optimum at the influent flow rate of 5.0 L/d, equivalent to 20 days of hydraulic retention time (HRT). The highest microalgal nitrogen assimilation rate (0.0271 /d) and biomass productivity (1350 mg/d) were recorded amidst this flow rate. Further increase to the 10.0 L/d flow rate reduced the photobioreactor performance, as evidenced by a reduction in microalgal biomass productivity (>10%). The microalgal biomass per unit of nitrogen assimilated values were attained at 16.69 mg/mg for the 5.0 L/d flow rate as opposed to 7.73 mg/mg for the 10.0 L/d flow rate, despite both having comparable specific growth rates. Also, the prior influent treatment by activated sludge was found to exude extracellular polymeric substances which significantly improved the microalgal biomass settleability up to 37%. The employment of SFB-AlgalBac photobioreactor is anticipated could exploit the low-cost nitrogen sources from nutrient-rich wastewaters via bioconversion into valuable microalgal biomass while fulfilling the requirements of sustainable wastewater treatment technologies.


Assuntos
Microalgas , Fotobiorreatores , Biomassa , Nitrogênio , Nutrientes , Águas Residuárias
12.
Environ Res ; 185: 109458, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32247911

RESUMO

The conventional practice in enhancing the larvae growths is by co-digesting the low-cost organic wastes with palatable feeds for black soldier fly larvae (BSFL). In circumventing the co-digestion practice, this study focused the employment of exo-microbes in a form of bacterial consortium powder to modify coconut endosperm waste (CEW) via fermentation process in enhancing the palatability of BSFL to accumulate more larval lipid and protein. Accordingly, the optimum fermentation condition was attained by inoculating 0.5 wt% of bacterial consortium powder into CEW for 14-21 days. The peaks of BSFL biomass gained and growth rate were initially attained whilst feeding the BSFL with optimum fermented CEW. These were primarily attributed by the lowest energy loss via metabolic cost, i.e., as high as 22% of ingested optimum fermented CEW was effectively bioconverted into BSFL biomass. The harvested BSFL biomass was then found containing about 40 wt% of lipid, yielding 98% of fatty acid methyl esters of biodiesel upon transesterification. Subsequently, the protein content was also analyzed to be 0.32 mg, measured from 20 harvested BSFL with a corrected-chitin of approximately 8%. Moreover, the waste reduction index which represents the BSFL valorization potentiality was recorded at 0.31 g/day 20 BSFL. The benefit of fermenting CEW was lastly unveiled, accentuating the presence of surplus acid-producing bacteria. Thus, it was propounded the carbohydrates in CEW were rapidly hydrolysed during fermentation, releasing substantial organic acids and other nutrients to incite the BSFL assimilation into lipid for biodiesel and protein productions simultaneously.


Assuntos
Dípteros , Simuliidae , Animais , Biocombustíveis , Cocos , Endosperma , Larva
13.
Chemosphere ; 245: 125565, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31855765

RESUMO

An approach that can recuperate of energy from wastewater treatment process is highly necessitate and would help to surmount the both environmental pollution and energy crisis issues. A photocatalytic fuel cell (PFC) employing an anodic TiO2/ZnO/Zn and a cathodic CuO/Cu has been applied to degrade the raw greywater, which realized advanced organics destruction, bacteria disinfection, and synchronously electricity production. The improved photocatalytic performance has been observed when the cell was incorporated with anodic TiO2/ZnO/Zn under UV and sunlight irradiation due to the enhanced electric field conductivity of the catalysts and heterojunction interface of TiO2. In the constructed UV-activated PFC system, the electricity production capability was observed with the measured voltage and power density of 868 mV and 0.0172 mW cm-2, respectively. Advanced chemical oxygen demand (COD) removal efficiency of greywater achieved a 100% completion within 60 min of light irradiation. The Escherichia coli (E. coli) colonies decreased significantly and accounted ∼99% disinfection efficiency. Moreover, the photoelectrochemical and photoluminescence (PL) experiments elucidated that the charge carrier separation efficiency were higher when TiO2 was coupled to ZnO. The organic matter elimination principle was assessed by radical trapping experiment, and the findings indicated that the hydroxyl (OH) radical and hole (h+) appeared as major functions in the reaction. The stable cycle operation of the cell has been also obtained owing to the stable and film-type materials of anodic material. This performance was among the highest documented for PFC using real wastewater effluent as the fuel source.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Bactérias , Fontes de Energia Bioelétrica , Análise da Demanda Biológica de Oxigênio , Catálise , Cobre , Eletricidade , Eletrodos , Escherichia coli , Águas Residuárias/química , Zinco , Óxido de Zinco/química
14.
J Nanosci Nanotechnol ; 19(8): 5271-5278, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913844

RESUMO

Shaped-controlled ZnO architectures including spherical, rod, rice-like and flower-like were fabricated via a reflux method in which the morphology, crystallinity, functional group and optical properties were tailored under different pH values in the precursor solution. The photoactivities of the prepared ZnO were evaluated under UV irradiation and the findings implied that the flower-like ZnO synthesized at pH 12 displayed superior activities on palm oil mil effluent degradation than those of other structures. The photocatalytic enhancement of flower-like ZnO was ascribed to its unique architecture, good crystallinity and superior optical properties. The flower-like ZnO with excellent photocatalytic performance have been confirmed by formation of hydroxyl radicals using a terephthalic acid-photoluminescence test. There was an optimal photocatalyst amount of 1.0 g/L, at which a maximum chemical oxygen demand removal of palm oil mill effluent was achieved under exposure of UV light. The phytotoxicity experiment via mung beans demonstrated a decrease in phytotoxicity.

15.
Environ Sci Pollut Res Int ; 26(10): 10204-10218, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30758796

RESUMO

Visible light-responsive Pt-loaded coral-like BiFeO3 (Pt-BFO) nanocomposite at different Pt loadings was synthesized via a two-step hydrothermal synthesis method. The as-synthesized photocatalyst was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and magnetic hysteresis loop (M-H loop) analyses. The FESEM images revealed that Pt nanoparticles were evenly distributed on the coral-like BFO. The UV-vis DRS results indicated that the addition of Pt dopant modified the optical properties of the BFO. The as-synthesized Pt-BFO nanocomposite was effectively applied for the photodegradation of malachite green (MG) dye under visible light irradiation. Specifically, 0.5 wt% Pt-BFO nanocomposite presented boosted photocatalytic performance than those of the pure BFO and commercial TiO2. Such a remarkably improved photoactivity could be mainly attributed to the formation of good interface between Pt and BFO, which not only boosted the separation efficiency of charge carriers but also possessed great redox ability for significant photocatalytic reaction. Moreover, the strong magnetic property of the Pt-BFO nanocomposite was helpful in the particle separation along with its great recyclability. The radical scavenger test indicated that hole (h+), hydroxyl (·OH) radical, and hydrogen peroxide (H2O2) were the main oxidative species for the Pt-BFO photodegradation of MG. Finally, the Pt-BFO nanocomposite was revealed high antibacterial activity towards Bacillus cereus (B. cereus) and Escherichia coli (E. coli) microorganisms, highlighting its potential photocatalytic and antibacterial properties at different industrial and biomedical applications.


Assuntos
Antibacterianos/química , Modelos Químicos , Nanocompostos/química , Catálise , Escherichia coli , Peróxido de Hidrogênio , Luz , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas , Processos Fotoquímicos , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier , Raios Ultravioleta , Difração de Raios X
16.
J Environ Manage ; 228: 383-392, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30243074

RESUMO

Recycling of alternative water sources particularly greywater and recovery of energy from wastewater are gaining momentum due to clean water scarcity and energy crisis. In this study, the photocatalytic fuel cell (PFC) employing ZnO/Zn photoanode and CuO/Cu photocathode was successfully designed for effective greywater recycling as well as energy recovery. The photoelectrodes were analyzed using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and fourier transform infrared (FTIR) spectroscopy. The PFC performance in terms of electricity generation and parallel methyl green (MG) degradation were evaluated under operating parameters such as electrolyte type, initial MG concentration and solution pH. The results showed that the addition of Na2SO4 electrolyte, MG concentration of 40 mg L-1 and solution pH of 5.2 improved the short circuit current density (Jsc) and power density (Pmax) in the as-constructed PFC. Such a system also afforded highest MG and chemical oxygen demand (COD) removal efficiencies after 4 h of irradiation. The photoanodes used in this study demonstrated great recyclability after four repetition tests. The COD removal was reduced to some extents when the PFC treatment was tested in the real greywater under optimal conditions. Various greywater quality parameters including ammoniacal nitrogen (NH3-N), turbidity, pH and biochemical oxygen demand (BOD5) were also monitored. The phytotoxicity experiments via Vigna radiate seeds indicated a reduction in the phytotoxicity.


Assuntos
Verde de Metila/química , Análise da Demanda Biológica de Oxigênio , Catálise , Eletricidade , Eletrólitos , Fósforo/química , Águas Residuárias/química
17.
J Photochem Photobiol B ; 187: 66-75, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30099271

RESUMO

Flower-like ZnO micro/nanostructures were successfully fabricated via a surfactant-free co-precipitation method. The as-synthesized product was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL) analyses. In the presence of visible light irradiation, the as-synthesized flower-like ZnO showed higher antibacterial activities against Enterococcus faecalis (E. faecalis) and Micrococcus luteus (M. luteus) than that of commercial ZnO. The excellent antibacterial performance of synthesized flower-like ZnO was also observed via the bacterial morphological change, K+ ions leakage and protein leakage in extracellular suspension. In addition, the FTIR investigation on both treated bacteria further confirmed the bacterial membrane damage via cellular substance alteration. The enhancement of the antibacterial activity of synthesized ZnO can be attributed to the unique flower-like morphology which can increase the surface OH- groups and the quantity of photogenerated electron-hole pair available to participate in the photocatalytic reaction. The reactive oxidizing species (ROS) scavengers experiments showed that H2O2 played a main role in the photocatalytic antibacterial process. Our study showed that the synthesized flower-like ZnO micro/nanostructures can act as efficient antibacterial agents in the photocatalytic antibacterial process under visible light irradiation.


Assuntos
Antibacterianos/química , Luz , Óxido de Zinco/química , Antioxidantes/química , Catálise , Enterococcus faecalis/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Micrococcus luteus/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Óxido de Zinco/síntese química , Óxido de Zinco/farmacologia
18.
J Colloid Interface Sci ; 450: 34-44, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25801130

RESUMO

Highly effective WO3/ZnO nanorods (NRs) were synthesized via a hydrothermal-deposition method for degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under natural sunlight. The structural properties of WO3/ZnO NRs such as morphology, crystal structure, porous properties and light absorption characteristics were investigated in detail. The X-ray diffraction and X-ray photoelectron spectroscopy results indicated that the prepared samples were two-phase photocatalysts consisted of WO3 and ZnO NRs. The UV-vis diffuse reflectance spectroscopy result showed that the addition of WO3 altered the optical properties of the photocatalysts. In contrast with the pure ZnO NRs, commercial anatase TiO2 and commercial WO3, the WO3/ZnO NRs showed excellent sunlight photocatalytic activities in degrading 2,4-D. The optimal WO3 loading and calcination temperature were also determined. Based on the band position, the synergetic effect of WO3 and ZnO NRs was the source of the enhanced photocatalytic activity as validated by PL and terephthalic acid-photoluminescence measurements. The reaction intermediates and degradation pathways of 2,4-D were elucidated by a HPLC method. In addition, the extent of mineralization during the 2,4-D degradation was also estimated using total organic carbon (TOC) and ion chromatography (IC) analyses.

19.
Environ Technol ; 34(9-12): 1097-106, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24191441

RESUMO

In the work presented here, photocatalytic systems using TiO2 and ZnO suspensions were utilized to evaluate the degradation of resorcinol (ReOH). The effects of catalyst concentration and solution pH were investigated and optimized using multivariate analysis based on response surface methodology. The results indicated that ZnO showed greater degradation and mineralization activities compared to TiO2 under optimized conditions. Using certain radical scavengers, a positive hole, together with the participation of hydroxyl radicals, were the oxidative species responsible for ReOH degradation on TiO2 whereas, the ZnO photocatalysis occurred principally via hydroxyl radicals. Some hitherto unreported pathway intermediates of ReOH degradation were identified using gas chromatography-mass spectrometry. A tentative reaction mechanism for the formation of these intermediates was proposed. Moreover, the figure-of-merit electrical energy per order was employed to estimate the electrical energy consumption.


Assuntos
Disruptores Endócrinos/química , Recuperação e Remediação Ambiental/métodos , Resorcinóis/química , Titânio/química , Poluentes Químicos da Água/química , Óxido de Zinco/química , Análise de Variância , Disruptores Endócrinos/análise , Resíduos Industriais , Modelos Moleculares , Processos Fotoquímicos , Projetos de Pesquisa , Resorcinóis/análise , Poluentes Químicos da Água/análise
20.
J Colloid Interface Sci ; 401: 40-9, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23618322

RESUMO

A novel samarium-doped spherical-like ZnO hierarchical nanostructure (Sm/ZnO) was synthesized via a facile and surfactant-free chemical solution route. The as-synthesized products were characterized by X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, field emission scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The results revealed that Sm ion was successfully doped into ZnO. It was also observed that the Sm doping increased the visible light absorption ability of Sm/ZnO and a red shift for Sm/ZnO appeared when compared to pure ZnO. The photocatalytic studies revealed that the Sm/ZnO exhibited excellent photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) compared with the pure ZnO and commercial TiO2 under visible light irradiation. The photocatalytic enhancement of Sm/ZnO products was attributed to their high charge separation efficiency and ·OH generation ability as evidenced by the photoluminescence spectra. The photocatalytic investigation also showed that various parameters exerted their individual influence on the degradation rate of 2,4-DCP. By using a certain of radical scavengers, ·OH was determined to play a pivotal role for the 2,4-DCP degradation. Moreover, the Sm/ZnO could be easily separated and reused, indicating great potential for practical applications in environmental cleanup.


Assuntos
Clorofenóis/química , Luz , Nanoestruturas/química , Samário/química , Óxido de Zinco/química , Catálise , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...