Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(2): e11073, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38405409

RESUMO

Tuatara are the sole extant species in the reptile order Rhynchocephalia. They are ecologically and evolutionarily unique, having been isolated geographically for ~84 million years and evolutionarily from their closest living relatives for ~250 million years. Here we report the tuatara gut bacterial community for the first time. We sampled the gut microbiota of translocated tuatara at five sanctuaries spanning a latitudinal range of ~1000 km within Aotearoa New Zealand, as well as individuals from the source population on Takapourewa (Stephens Island). This represents a first look at the bacterial community of the order Rhynchocephalia and provides the opportunity to address several key hypotheses, namely that the tuatara gut microbiota: (1) differs from those of other reptile orders; (2) varies among geographic locations but is more similar at sites with more similar temperatures and (3) is shaped by tuatara body condition, parasitism and ambient temperature. We found significant drivers of the microbiota in sampling site, tuatara body condition, parasitism and ambient temperature, suggesting the importance of these factors when considering tuatara conservation. We also derived a 'core' community of shared bacteria across tuatara at many sites, despite their geographic range and isolation. Remarkably, >70% of amplicon sequence variants could not be assigned to known genera, suggesting a largely undescribed gut bacterial community for this ancient host species.

2.
J Exp Zool A Ecol Integr Physiol ; 341(1): 60-72, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921244

RESUMO

Leukocyte profiles are broadly used to assess the health status of many species. Reference intervals, and an understanding of the factors that may influence these intervals, are necessary for adequate interpretation of leukograms. Using a data set that spans over three decades, we investigated variation in leukocyte profile in several populations of the evolutionarily unique reptile, the tuatara (Sphenodon punctatus). To do this, we first established reference intervals for each leukocyte type according to best practices. Next, we determined that source population and sampling date were the two most important predictors of leukocyte makeup. We found significant differences in the ratio of heterophils: lymphocytes (H:L) between populations, with tuatara on the more resource-stressed sampling island having a significantly higher ratio of H:L. Finally, we found that sampling location, sex, and life stage did not explain variation in the responses of tuatara to stimulation with Concanavalin A and lipopolysaccharide in both 3-(4,5-dimethylthiazol-2-yl)-2,5-di-phenyltetrazolium bromide and Griess assay experiments. Our results offer important insight into the function of leukocytes in reptiles.


Assuntos
Leucócitos , Répteis , Animais
3.
Conserv Physiol ; 11(1): coad071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663926

RESUMO

Managing a species of conservation concern can be best achieved when there is information on the reproductive physiology of both sexes available; however, many species lack this critical, baseline information. One such species, the tuatara (Sphenodon punctatus), is the last surviving member of one of the four reptile orders (Rhynchocephalia) and is the only reptile known to lack a male intromittent organ. Culturally and evolutionarily significant, the conservation of this species is a global priority for the maintenance of biodiversity. In light of this, we characterized the morphology, viability and swim speed of mature tuatara sperm for the first time. We found that tuatara sperm are filiform and bear the remarkably conserved three-part sperm structure seen across the animal kingdom. Tuatara sperm are long (mean total length 166 µm), with an approximate head:midpiece:tail ratio of 15:1:17. While tuatara sperm are capable of high levels of within-mating viability (94.53%), the mean viability across all samples was 58.80%. Finally, tuatara sperm had a mean curvilinear velocity swim speed (µ × s - 1) of 82.28. At the population level, there were no differences in viability or mean swim speed between sperm collected from a male's first mating of a season and repeat matings; however, the maximum sperm swim speed increased in observed repeated matings relative to first matings. Interestingly, faster sperm samples had shorter midpieces, but had greater viability and longer head and tail sections. This work expands our understanding of male reproductive characteristics and their variation to a new order, provides wild references for the assessment of captive individuals, lays the groundwork for potential assisted reproductive techniques and highlights variation in male reproductive potential as an important factor for consideration in future conservation programs for this unique species.

4.
Biol Open ; 11(10)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36239241

RESUMO

The morphological characteristics that impact feeding ecology in ectotherms, particularly reptiles, are poorly understood. We used morphometric measures and stable isotope analysis (carbon-13 and nitrogen-15) to assess the link between diet and functional morphology in an island population of an evolutionarily unique reptile, the tuatara (Sphenodon punctatus). First, we established a significant positive correlation between overall body size, gape size, and fat store in tuatara (n=56). Next, we describe the relationship between stable isotope profiles created from whole blood and nail trim samples and demonstrate that nail trims offer a low-impact method of creating a long-term dietary profile in ectotherms. We used nitrogen-15 values to assess trophic level in the population and found that tuatara on Takapourewa forage across multiple trophic levels. Finally, we found a significant relationship between gape size and carbon-13 (linear regression: P<0.001), with tuatara with large gapes showing dietary profiles that suggest a higher intake of marine (seabird) prey. However, whether body size or gape size is the primary adaptive characteristic allowing for more optimal foraging is yet unknown. This article has an associated First Person interview with the first author of the paper.


Assuntos
Dieta , Répteis , Animais , Tamanho Corporal , Isótopos de Carbono , Humanos , Isótopos de Nitrogênio
5.
PLoS One ; 16(7): e0253628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237077

RESUMO

Successful reproduction is critical to the persistence of at-risk species; however, reproductive characteristics are understudied in many wild species. New Zealand's endemic tuatara (Sphenodon punctatus), the sole surviving member of the reptile order Rhynchocephalia, is restricted to 10% of its historic range. To complement ongoing conservation efforts, we collected and characterized mature sperm from male tuatara for the first time. Semen collected both during mating and from urine after courting contained motile sperm and had the potential for a very high percentage of viable sperm cells (98%). Scanning electron microscopy revealed a filiform sperm cell with distinct divisions: head, midpiece, tail, and reduced end piece. Finally, our initial curvilinear velocity estimates for tuatara sperm are 2-4 times faster than any previously studied reptile. Further work is needed to examine these trends at a larger scale; however, this research provides valuable information regarding reproduction in this basal reptile.


Assuntos
Espécies em Perigo de Extinção , Genitália Masculina/anatomia & histologia , Inseminação Artificial/veterinária , Répteis/anatomia & histologia , Espermatozoides/ultraestrutura , Animais , Feminino , Genitália Feminina/anatomia & histologia , Genitália Masculina/fisiologia , Masculino , Microscopia Eletrônica de Varredura , Répteis/fisiologia , Análise do Sêmen/métodos , Espermatozoides/fisiologia
6.
Ecol Evol ; 10(18): 10254-10270, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005380

RESUMO

Invasive species provide an opportune system to investigate how populations respond to new environments. Baby's breath (Gypsophila paniculata) was introduced to North America in the 1800s and has since spread throughout the United States and western Canada. We used an RNA-seq approach to explore how molecular processes contribute to the success of invasive populations with similar genetic backgrounds across distinct habitats. Transcription profiles were constructed from seedlings collected from a sand dune ecosystem in Petoskey, MI (PSMI), and a sagebrush ecosystem in Chelan, WA (CHWA). We assessed differential gene expression and identified SNPs within differentially expressed genes. We identified 1,146 differentially expressed transcripts across all sampled tissues between the two populations. GO processes enriched in PSMI were associated with nutrient starvation, while enriched processes in CHWA were associated with abiotic stress. Only 7.4% of the differentially expressed transcripts contained SNPs differing in allele frequencies of at least 0.5 between populations. Common garden studies found the two populations differed in germination rate and seedling emergence success. Our results suggest the success of G. paniculata in these two environments is likely due to plasticity in specific molecular processes responding to different environmental conditions, although some genetic divergence may be contributing to these differences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...