Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sports (Basel) ; 10(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35622473

RESUMO

The bacteria inhabiting the gastrointestinal tract contribute to numerous host functions and can be altered by lifestyle factors. We aimed to determine whether a 6-week training intervention altered fecal microbiome diversity and/or function in older males. Fecal samples were collected prior to and following a 6-week twice-weekly supervised resistance training intervention in 14 older Caucasian males (65 ± 10 years, 28.5 ± 3.2 kg/m2) with minimal prior training experience. Participants were randomized to receive a daily defatted peanut powder supplement providing 30 g protein (n = 8) or no supplement (n = 6) during the intervention. Bacterial DNA was isolated from pre-and post-training fecal samples, and taxa were identified using sequencing to amplify the variable region 4 (V4) of the 16S ribosomal RNA gene. Training significantly increased whole-body and lower-body lean mass (determined by dual energy X-ray absorptiometry) as well as leg extensor strength (p < 0.05) with no differences between intervention groups. Overall composition of the microbiome and a priori selected taxa were not significantly altered with training. However, MetaCYC pathway analysis indicated that metabolic capacity of the microbiome to produce mucin increased (p = 0.047); the tight junction protein, zonulin, was measured in serum and non-significantly decreased after training (p = 0.062). Our data suggest that resistance training may improve intestinal barrier integrity in older Caucasian males; further investigation is warranted.

2.
FASEB J ; 35(9): e21864, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34423880

RESUMO

Resistance training (RT) dynamically alters the skeletal muscle nuclear DNA methylome. However, no study has examined if RT affects the mitochondrial DNA (mtDNA) methylome. Herein, ten older, Caucasian untrained males (65 ± 7 y.o.) performed six weeks of full-body RT (twice weekly). Body composition and knee extensor torque were assessed prior to and 72 h following the last RT session. Vastus lateralis (VL) biopsies were also obtained. VL DNA was subjected to reduced representation bisulfite sequencing providing excellent coverage across the ~16-kilobase mtDNA methylome (254 CpG sites). Biochemical assays were also performed, and older male data were compared to younger trained males (22 ± 2 y.o., n = 7, n = 6 Caucasian & n = 1 African American). RT increased whole-body lean tissue mass (p = .017), VL thickness (p = .012), and knee extensor torque (p = .029) in older males. RT also affected the mtDNA methylome, as 63% (159/254) of the CpG sites demonstrated reduced methylation (p < .05). Several mtDNA sites presented a more "youthful" signature in older males after RT in comparison to younger males. The 1.12 kilobase mtDNA D-loop/control region, which regulates replication and transcription, possessed enriched hypomethylation in older males following RT. Enhanced expression of mitochondrial H- and L-strand genes and complex III/IV protein levels were also observed (p < .05). While limited to a shorter-term intervention, this is the first evidence showing that RT alters the mtDNA methylome in skeletal muscle. Observed methylome alterations may enhance mitochondrial transcription, and RT evokes mitochondrial methylome profiles to mimic younger men. The significance of these findings relative to broader RT-induced epigenetic changes needs to be elucidated.


Assuntos
Envelhecimento , Metilação de DNA , DNA Mitocondrial/metabolismo , Epigenoma , Regulação da Expressão Gênica , Genes Mitocondriais/genética , Músculo Esquelético/metabolismo , Treinamento Resistido , Idoso , Envelhecimento/genética , Envelhecimento/metabolismo , DNA Mitocondrial/genética , Humanos , Masculino , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/citologia , RNA Mensageiro/análise , RNA Mensageiro/genética , Adulto Jovem
3.
Antioxidants (Basel) ; 10(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652958

RESUMO

The aim of this study was to investigate the effects of resistance training (RT) on the redox status of skeletal muscle in older adults. Thirteen males aged 64 ± 9 years performed full-body RT 2x/week for 6 weeks. Muscle biopsies were obtained from the vastus lateralis prior to and following RT. The mRNA, protein, and enzymatic activity levels of various endogenous antioxidants were determined. In addition, skeletal muscle 4-hydroxynonenal and protein carbonyls were determined as markers of oxidative damage. Protein levels of heat shock proteins (HSPs) were also quantified. RT increased mRNA levels of all assayed antioxidant genes, albeit protein levels either did not change or decreased. RT increased total antioxidant capacity, catalase, and glutathione reductase activities, and decreased glutathione peroxidase activity. Lipid peroxidation also decreased and HSP60 protein increased following RT. In summary, 6 weeks of RT decreased oxidative damage and increased antioxidant enzyme activities. Our results suggest the older adult responses to RT involve multi-level (transcriptional, post-transcriptional, and post-translational) control of the redox status of skeletal muscle.

4.
J Int Soc Sports Nutr ; 17(1): 66, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317565

RESUMO

Several studies suggest resistance training (RT) while supplementing with various protein supplements can enhance strength and muscle mass in older individuals. However, to date, no study has examined the effects of RT with a peanut protein powder (PP) supplement on these outcomes. Herein, 39 older, untrained individuals (n = 17 female, n = 22 male; age = 58.6 ± 8.0 years; body mass index =28.7 ± 5.8) completed a 6-week (n = 22) or 10-week (n = 17) RT program, where full-body training was implemented twice weekly (ClinicalTrials.gov trial registration NCT04015479; registered July 11, 2019). Participants in each program were randomly assigned to consume either a PP supplement once per day (75 total g powder providing 30 g protein, > 9.2 g essential amino acids, ~ 315 kcal; n = 20) or no supplement (CTL; n = 19). Right leg vastus lateralis (VL) muscle biopsies were obtained prior to and 24 h following the first training bout in all participants to assess the change in myofibrillar protein synthetic rates (MyoPS) as measured via the deuterium-oxide (D2O) tracer method. Pre- and Post-intervention testing in all participants was conducted using dual energy x-ray absorptiometry (DXA), VL ultrasound imaging, a peripheral quantitative computed tomography (pQCT) scan at the mid-thigh, and right leg isokinetic dynamometer assessments. Integrated MyoPS rates over a 24-h period were not significantly different (p < 0.05) between supplement groups following the first training bout. Regarding chronic changes, there were no significant supplement-by-time interactions in DXA-derived fat mass, lean soft tissue mass or percent body fat between supplementation groups. There was, however, a significant increase in VL thickness in PP versus CTL participants when the 6- and 10-week cohorts were pooled (interaction p = 0.041). There was also a significant increase in knee flexion torque in the 10-week PP group versus the CTL group (interaction p = 0.032). In conclusion, a higher-protein, defatted peanut powder supplement in combination with RT positively affects select markers of muscle hypertrophy and strength in an untrained, older adult population. Moreover, subanalyses indicated that gender did not play a role in these adaptations.


Assuntos
Arachis/química , Suplementos Nutricionais , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Proteínas de Vegetais Comestíveis/administração & dosagem , Treinamento Resistido/métodos , Absorciometria de Fóton , Adaptação Fisiológica/fisiologia , Idoso , Índice de Massa Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/biossíntese , Músculo Quadríceps/fisiologia , Torque
5.
Physiol Rep ; 8(15): e14526, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32748504

RESUMO

We investigated the acute and chronic effects of resistance training (RT) on skeletal muscle markers of mitochondrial content and remodeling in older, untrained adults. Sixteen participants (n = 6 males, n = 10 females; age = 59 ± 4 years) completed 10 weeks of full-body RT (2 day/week). Muscle biopsies from the vastus lateralis were obtained prior to RT (Pre), 24 hr following the first training session (Acute), and 72 hr following the last training session (Chronic). Protein levels of mitochondrial electron transport chain complexes I-V (+39 to +180%, p ≤ .020) and markers of mitochondrial fusion Mfn1 (+90%, p = .003), Mfn2 (+110%, p < .001), and Opa1 (+261%, p = .004) increased following chronic RT. Drp1 protein levels also increased (+134%, p = .038), while Fis1 protein levels did not significantly change (-5%, p = .584) following chronic RT. Interestingly, protein markers of mitochondrial biogenesis (i.e., PGC-1α, TFAM, and NRF1) or mitophagy (i.e., Pink1 and Parkin) were not significantly altered (p > .050) after 10 weeks of RT. In summary, chronic RT promoted increases in content of electron transport chain proteins (i.e., increased protein levels of all five OXPHOS complexes) and increase in the levels of proteins related to mitochondrial dynamics (i.e., increase in fusion protein markers) in skeletal muscle of older adults. These results suggest that chronic RT could be a useful strategy to increase mitochondrial protein content in older individuals.


Assuntos
Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Treinamento Resistido/efeitos adversos , Idoso , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/fisiologia , Fosforilação Oxidativa , Treinamento Resistido/métodos
6.
Aging (Albany NY) ; 12(10): 9447-9460, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32369778

RESUMO

We examined if resistance training affected muscle NAD+ and NADH concentrations as well as nicotinamide phosphoribosyltransferase (NAMPT) protein levels and sirtuin (SIRT) activity markers in middle-aged, untrained (MA) individuals. MA participants (59±4 years old; n=16) completed 10 weeks of full-body resistance training (2 d/wk). Body composition, knee extensor strength, and vastus lateralis muscle biopsies were obtained prior to training (Pre) and 72 hours following the last training bout (Post). Data from trained college-aged men (22±3 years old, training age: 6±2 years old; n=15) were also obtained for comparative purposes. Muscle NAD+ (+127%, p<0.001), NADH (+99%, p=0.002), global SIRT activity (+13%, p=0.036), and NAMPT protein (+15%, p=0.014) increased from Pre to Post in MA participants. Additionally, Pre muscle NAD+ and NADH in MA participants were lower than college-aged participants (p<0.05), whereas Post values were similar between cohorts (p>0.10). Interestingly, muscle citrate synthase activity levels (i.e., mitochondrial density) increased in MA participants from Pre to Post (+183%, p<0.001), and this increase was significantly associated with increases in muscle NAD+ (r2=0.592, p=0.001). In summary, muscle NAD+, NADH, and global SIRT activity are positively affected by resistance training in middle-aged, untrained individuals. Whether these adaptations facilitated mitochondrial biogenesis remains to be determined.


Assuntos
Citocinas/metabolismo , Músculo Esquelético , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Sobrepeso , Treinamento Resistido , Envelhecimento/metabolismo , Citocinas/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/química , Músculo Esquelético/metabolismo , NAD/análise , Nicotinamida Fosforribosiltransferase/análise , Sobrepeso/metabolismo , Sobrepeso/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...