Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(26): 17956-17963, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38850552

RESUMO

Conjugation between three-dimensional (3D) carboranes and the attached substituents is commonly believed to be very weak. In this paper, we report that reducing 1,12-bis(BMes2)-p-carborane (B2pCab) with one electron gives a radical anion with a centrosymmetric semiquinoidal structure. This radical anion shows extensive electron delocalization between the two boron centers over the p-carborane bridge due to the overlap of carborane lowest unoccupied molecular orbital (LUMO) and the BMes2 LUMO. Unlike dianions of other C2B10H12 carboranes, which rearrange to a nido-form, two-electron reduction of B2pCab leads to a rearrangement into a basket-shaped intermediate.

2.
J Chem Phys ; 160(23)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904406

RESUMO

Charged molecules play essential roles in many natural and artificial functional processes, ranging from photosynthesis to photovoltaics to chemical reactions and more. It is often difficult to identify the optical dynamic properties of relevant redox species because they cannot be easily prepared, their spectra overlap, or they evolve on a femtosecond timescale. Here, we address these challenges by combining spectroelectrochemistry, ultrafast transient absorption spectroscopy, and suitable data analysis. We illustrate the method with the various redox species of a cyclophane composed of two perylene bisimide subunits. While singular-value decomposition is a well-established tool in the analysis of time-dependent spectra of a single molecular species, we here use it additionally to separate transient maps of individual redox species. This is relevant because at any specific applied electrochemical potential, several redox species coexist in the ensemble, and our procedure allows disentangling their spectroscopic response. In the second step, global analysis is then employed to retrieve the excited-state lifetimes and decay-associated difference spectra. Our approach is generally suitable for unraveling ultrafast dynamics in materials featuring charge-transfer processes.

3.
Nat Commun ; 15(1): 3005, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589381

RESUMO

Icosahedral carboranes, C2B10H12, have long been considered to be aromatic but the extent of conjugation between these clusters and their substituents is still being debated. m- and p-Carboranes are compared with m- and p-phenylenes as conjugated bridges in optical functional chromophores with a donor and an acceptor as substituents here. The absorption and fluorescence data for both carboranes from experimental techniques (including femtosecond transient absorption, time-resolved fluorescence and broadband fluorescence upconversion) show that the absorption and emission processes involve strong intramolecular charge transfer between the donor and acceptor substituents via the carborane cluster. From quantum chemical calculations on these carborane systems, the charge transfer process depends on the relative torsional angles of the donor and acceptor groups where an overlap between the two frontier orbitals exists in the bridging carborane cluster.

4.
Phys Chem Chem Phys ; 26(6): 4954-4967, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277181

RESUMO

Stretched electron-donor-bridge-acceptor triads that exhibit intramolecular twisting degrees of freedom are capable of modulating exchange interaction (J) as well as electronic couplings through variable π-overlap at the linear bond links, affecting the rate constants of photoinduced charge separation and recombination. Here we present an in-depth investigation of such effects induced by methyl substituents leading to controlled steric hindrance of intramolecular twisting around biaryl axes. Starting from the parent structure, consisting of a triphenyl amine donor, a triptycene (TTC) bridge and a phenylene-perylene diimide acceptor (Me0), one of the two phenylene linkers attached to the TTC was ortho-substituted by two methyl groups (Me2, Me3), or both such phenylene linkers by two pairs of methyl groups (Me23). Photoinduced charge separation (kCS) leading to a charge-separated (CS) state was studied by fs-laser spectroscopy, charge recombination to either singlet ground state (kS) or to the first excited local triplet state of the acceptor (kT) by ns-laser spectroscopy, whereby kinetic magnetic field effects in an external magnetic field were recorded and analysed using quantum dynamic simulations of the spin dependent kinetics of the CS state. Kinetic spectra of the initial first order rate constants of charge recombination (k(B)) exhibited characteristic J-resonances progressing to lower fields in the series Me0, Me2, Me3, Me23. From the quantum simulations, the values of the parameters J, kS, kT and kSTD, the singlet/triplet dephasing constant, were obtained. They were analysed in terms of molecular dynamics simulations of the intramolecular twisting dynamics based on potentials calculated by density functional theory. Apart from kT, all of the parameters exhibit a clear correlation with the averaged cosine square products of the biaryl angles.

5.
Chemistry ; 30(19): e202303782, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38293898

RESUMO

The study focuses on the structural and photophysical characteristics of neutral and oxidized forms of N-tolanyl-phenochalcogenazines PZX-tolan with X=O, S, Se, and Te. X-ray crystal structure analyses show a pseudo-equatorial (pe) structure of the tolan substituent in the O, S, and Se dyads, while the Te dyad possesses a pseudo-axial (pa) structure. DFT calculations suggest the pe structure for O and S, and the pa structure for Se and Te as stable forms. Steady-state and femtosecond-time resolved optical spectroscopy in toluene solution indicate that the O and S dyads emit from a CT state, whereas the Se and Te dyads emit from a tolan-localized state. The T1 state is tolan-localized in all cases, showing phosphorescence at 77 K. The heavy atom effect of chalcogens induces intersystem crossing from S1 to Tx, resulting in a decreasing S1 lifetime from 2.1 ns to 0.42 ps. The T1 states possess potential for singlet oxygen sensitization with a high quantum yield (ca. 40 %) for the O, S, and Se dyads. Radical cations exhibit spin density primarily localized at the heterocycle. EPR measurements and quasirelativistic DFT calculations reveal a very strong g-tensor anisotropy, supporting the pe structure for the S and Se derivatives.

6.
Chemistry ; 30(2): e202303067, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37902606

RESUMO

A new carbazole-substituted bisterpyridine with pronounced delayed fluorescence is presented. While the molecular donor-acceptor-donor design suggests the origin of this to be thermally activated delayed fluorescence (TADF), results from various photophysical characterizations, OLED characteristics, temperature-dependent NMR spectroscopy, and DFT calculations all point against the involvement of triplet states. The molecule exhibits blue emission at about 440 nm with two or more fast decay channels in the lower nanosecond range in both solution and thin films. The delayed emission is proposed to be caused by rotational vibrational modes. We suggest that these results are generally applicable, especially for more complex molecules, and should be considered as alternative or competitive emissive relaxation pathways in the field of organic light emitting materials.

7.
Phys Chem Chem Phys ; 26(1): 219-229, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38055887

RESUMO

In order to understand the effects of disorder and defects in oligomers and polymers on the localization of excitons, we investigated the spectral properties of the squaraine B hexamer using long range corrected tight-binding TDDFT (lc-TDDFTB) and Frenkel-exciton model based calculations. Employing classical molecular dynamics, the cisoid indolenine squaraine hexamers helix was propagated in DCM and acetone to obtain ensembles of realistic structures, which naturally exhibit considerable disorder. The trajectories together with several model squaraine systems were studied to show the profound effects of disorder in the superstructure and disorder of the local monomer geometry on optical properties like absorption and exciton localization. We further compared lc-TDDFTB and exciton theory derived spectral data to related experimental data on absorption, exciton transfer and localization in squaraine polymers and oligomers.

8.
Chem Commun (Camb) ; 59(94): 14005-14008, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37941499

RESUMO

In this communication we describe a helically chiral push-pull molecule named 9,10-dimethoxy-[7]helicene diimide, displaying fluorescence (FL) and circularly polarised luminescence (CPL) over nearly the entire visible spectrum dependent on solvent polarity. The synthesised molecule exhibits an unusual solvent polarity dependence of FL quantum yield and nonradiative rate constant, as well as remarkable gabs and glum values along with high configurational stability.

9.
Chem Sci ; 14(35): 9328-9349, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37712031

RESUMO

Experimental and theoretical foundations for femtosecond time-resolved circular dichroism (TRCD) spectroscopy of excitonic systems are presented. In this method, the system is pumped with linearly polarized light and the signal is defined as the difference between the transient absorption spectrum probed with left and with right circularly polarized light. We present a new experimental setup with a polarization grating as key element to generate circularly polarized pulses. Herein the positive (negative) first order of the diffracted light is left-(right-)circularly polarized and serves as a probe pulse in a TRCD experiment. The grating is capable of transferring ultrashort broadband pulses ranging from 470 nm to 720 nm into two separate beams with opposite ellipticity. By applying a specific chopping scheme we can switch between left and right circular polarizations and detect transient absorption (TA) and TRCD spectra on a shot-to-shot basis simultaneously. We perform experiments on a squaraine polymer, investigating excitonic dynamics, and we develop a general theory for TRCD experiments of excitonically coupled systems that we then apply to describe the experimental data in this particular example. At a magic angle of 54.7° between the pump-pulse polarization and the propagation direction of the probe pulse, the TRCD and TA signals become particularly simple to analyze, since the orientational average over random orientations of complexes factorizes into that of the interaction with the pump and the probe pulse, and the intrinsic electric quadrupole contributions to the TRCD signal average to zero for isotropic samples. Application of exciton theory to linear absorption and to linear circular dichroism spectra of squaraine polymers reveals the presence of two fractions of polymer conformations, a dominant helical conformation with close interpigment distances that are suggested to lead to short-range contributions to site energy shifts and excitonic couplings of the squaraine molecules, and a fraction of unfolded random coils. Theory demonstrates that TRCD spectra of selectively excited helices can resolve state populations that are practically invisible in TA spectroscopy due to the small dipole strength of these states. A qualitative interpretation of TRCD and TA spectra in the spectral window investigated experimentally is offered. The 1 ps time component found in these spectra is related to the slow part of exciton relaxation obtained between states of the helix in the low-energy half of the exciton manifold. The dominant 140 ps time constant reflects the decay of excited states to the electronic ground state.

12.
J Org Chem ; 88(15): 10777-10788, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37487529

RESUMO

Five chiral squaraine dimers were synthesized by fusing chiral indolenine semisquaraines with three different benzobisthiazole bridges. The thereby created squaraine dimers show a strong splitting of the lowest energy absorption bands caused by exciton coupling. The intensities of the two exciton transitions and the energetic splitting depend on the angle of the two squaraine moieties within the chromophore dimer. The electric circular dichroism spectra of the dimers show intense Cotton effects whose sign depends on the used squaraine chromophores. Sizable anisotropies gabs of up to 2.6 × 10-3 could be obtained. TD-DFT calculations were used to partition the rotational strength into the three Rosenfeld terms where the electric-magnetic coupling turned out to be the dominant contribution while the exciton chirality term is much smaller. This is because the chromophore dimers are essentially planar but the angle between the electric transition dipole moment of one squaraine and the magnetic transition dipole moment of the other squaraine strongly deviates from 90°, which makes the dot product between the two moment vectors and, thus, the rotational strength substantial.

13.
J Chem Phys ; 158(23)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37326161

RESUMO

Time-resolved spectroscopy is commonly used to study diverse phenomena in chemistry, biology, and physics. Pump-probe experiments and coherent two-dimensional (2D) spectroscopy have resolved site-to-site energy transfer, visualized electronic couplings, and much more. In both techniques, the lowest-order signal, in a perturbative expansion of the polarization, is of third order in the electric field, which we call a one-quantum (1Q) signal because in 2D spectroscopy it oscillates in the coherence time with the excitation frequency. There is also a two-quantum (2Q) signal that oscillates in the coherence time at twice the fundamental frequency and is fifth order in the electric field. We demonstrate that the appearance of the 2Q signal guarantees that the 1Q signal is contaminated by non-negligible fifth-order interactions. We derive an analytical connection between an nQ signal and (2n + 1)th-order contaminations of an rQ (with r < n) signal by studying Feynman diagrams of all contributions. We demonstrate that by performing partial integrations along the excitation axis in 2D spectra, we can obtain clean rQ signals free of higher-order artifacts. We exemplify the technique using optical 2D spectroscopy on squaraine oligomers, showing clean extraction of the third-order signal. We further demonstrate the analytical connection with higher-order pump-probe spectroscopy and compare both techniques experimentally. Our approach demonstrates the full power of higher-order pump-probe and 2D spectroscopy to investigate multi-particle interactions in coupled systems.


Assuntos
Eletrônica , Análise Espectral , Fatores de Tempo , Transferência de Energia
14.
Nature ; 616(7956): 280-287, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973449

RESUMO

Quantum states depend on the coordinates of all their constituent particles, with essential multi-particle correlations. Time-resolved laser spectroscopy1 is widely used to probe the energies and dynamics of excited particles and quasiparticles such as electrons and holes2,3, excitons4-6, plasmons7, polaritons8 or phonons9. However, nonlinear signals from single- and multiple-particle excitations are all present simultaneously and cannot be disentangled without a priori knowledge of the system4,10. Here, we show that transient absorption-the most commonly used nonlinear spectroscopy-with N prescribed excitation intensities allows separation of the dynamics into N increasingly nonlinear contributions; in systems well-described by discrete excitations, these N contributions systematically report on zero to N excitations. We obtain clean single-particle dynamics even at high excitation intensities and can systematically increase the number of interacting particles, infer their interaction energies and reconstruct their dynamics, which are not measurable via conventional means. We extract single- and multiple-exciton dynamics in squaraine polymers11,12 and, contrary to common assumption6,13, we find that the excitons, on average, meet several times before annihilating. This surprising ability of excitons to survive encounters is important for efficient organic photovoltaics14,15. As we demonstrate on five diverse systems, our procedure is general, independent of the measured system or type of observed (quasi)particle and straightforward to implement. We envision future applicability in the probing of (quasi)particle interactions in such diverse areas as plasmonics7, Auger recombination2 and exciton correlations in quantum dots5,16,17, singlet fission18, exciton interactions in two-dimensional materials19 and in molecules20,21, carrier multiplication22, multiphonon scattering9 or polariton-polariton interaction8.

15.
J Org Chem ; 88(5): 2742-2749, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36802620

RESUMO

We present the reduction of two azaacenes (a benzo-[3,4]cyclobuta[1,2-b]phenazine and a benzo[3,4]cyclobuta[1,2-b]naphtho[2,3-i]phenazine derivative), featuring a single cyclobutadiene unit, to their radical anions and dianions. The reduced species were produced using potassium naphthalenide in the presence of 18-crown-6 in THF. Crystal structures of the reduced representatives were obtained and their optoelectronic properties evaluated. Charging these 4n Hückel systems gives dianionic 4n + 2 π-electron systems with increased antiaromaticity, according to NICS(1.7)zz calculations, featuring unusually red-shifted absorption spectra.

16.
Chem Sci ; 13(41): 12229-12238, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36349102

RESUMO

Yamamoto homocoupling of two chiral oxindoles led to the atropo-diastereoselective formation of an axially chiral oxindole dimer. This building block served as the starting material for the syntheses of axially chiral squaraine and merocyanine chromophore dimers. These dimers show pronounced chiroptical properties, this is, outstandingly high ECD signals (Δε up to ca. 1500 M-1 cm-1) as a couplet with positive Cotton effect for the P-configuration around the biaryl axis and a negative Cotton effect for the M-configuration. All investigated dimers also exhibit pronounced circularly polarised emission with anisotropy values of ca. 10-3 cgs. Time-dependent density functional calculations were used to analyse the three contributions (local one electron, electric-magnetic coupling, and exciton coupling) to the rotational strength applying the Rosenfeld equation to excitonically coupled chromophores. While the exciton coupling term proves to be the dominant one, the electric-magnetic coupling possesses the same sign and adds significantly to the total rotational strength owing to a favourable geometric arrangement of the two chromophores within the dimer.

17.
Phys Chem Chem Phys ; 24(42): 26254-26268, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36279022

RESUMO

While spin-orbit coupling does not play a decisive role in the photophysics of unsubstituted perylene diimides (PDI), this changes dramatically when two phenylselenyl or phenyltelluryl substituents were attached to the PDI bay positions. In the series of PhO-, PhS-, PhSe-, and PhTe-substituted PDIs we observed strongly decreasing fluorescence quantum yield as a consequence of strongly increasing intersystem crossing (ISC) rate, measured by transient absorption spectroscopy with fs- and ns-time resolution as well as by broadband fluorescence upconversion. Time-dependent density functional calculations suggest increasing spin-orbit coupling due to the internal heavy-atom effect as the reason for fast ISC. In case of the selenium PDI derivative we found significant singlet oxygen sensitization via the PDI triplet state. The corresponding radical anions of the chalcogen substituted PDIs were also prepared and investigated by optical and EPR spectroscopy. Here, the increasing SOC results in an increase of the g-tensor anisotropy, and of the isotropic g-value in solution, albeit quasirelativistic density functional calculations show only a relatively small fraction of the spin density to be located on the chalcogen atom.

18.
Chemistry ; 28(69): e202201919, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35916326

RESUMO

Tetraiodotetraazapentacene I4 TAP, the last missing derivative in the series of halogenated silylated tetraazapentacenes, was synthesized via condensation chemistry from a TIPS-ethynylated diaminobenzothiadiazol in three steps. Single and double reduction furnished its air-stable monoanion and relatively air-stable dianion, both of which were characterized by crystallography. All three species are structurally and spectroscopically compared to non-halogenated TAP and Br4 TAP. I4 TAP is an n-channel material in thin-film transistors with average electron mobilities exceeding 1 cm2 (Vs)-1 .


Assuntos
Elétrons , Semicondutores , Transporte de Elétrons , Ânions
19.
J Photochem Photobiol B ; 234: 112523, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35868133

RESUMO

We recently reported diethynylarene-linked bis(triarylborane) tetracations which show remarkable fluorimetric and Raman-SERS sensing of DNA/RNA. In the current study, we show that they exhibit promising photodynamic therapy (PDT)-based biological activity on human cell lines and adenovirus type 5 (HAdV5), acting as theranostic agents. All compounds efficiently enter living cells showing negligible antiproliferative activity. Bis-thiophene- and anthracene- analogues bind non-covalently to HAdV5 virus with high affinity, the anthracene-analogue itself causing a moderate antiviral effect, i.e., decreased ability of the virus to infect human cells. Irradiation of bis-thiophene- and anthracene- analogues with visible light (400-700 nm) caused a very rapid (within 1 min) and strong increase in cytotoxicity, as well as an order of magnitude increase in antiviral activity, attributed to the formation of reactive oxygen species (ROS). Photochemical studies of the compounds revealed that, upon irradiation, they produce singlet oxygen, which correlates with the observed light-induced bioactivity.


Assuntos
Fotoquimioterapia , Antracenos , Antivirais , Cátions , Linhagem Celular Tumoral , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Medicina de Precisão , Nanomedicina Teranóstica , Tiofenos
20.
Chemistry ; 28(48): e202201130, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35647673

RESUMO

Three novel tetracationic bis-triarylboranes with 3,4-ethylenedioxythiophene (EDOT) linkers, and their neutral precursors, showed significant red-shifted absorption and emission compared to their thiophene-containing analogues, with one of the EDOT-derivatives emitting in the NIR region. Only the EDOT-linked trixylylborane tetracation was stable in aqueous solution, indicating that direct attachment of a thiophene or even 3-methylthiophene to the boron atom is insufficient to provide hydrolytic stability in aqueous solution. Further comparative analysis of the EDOT-linked trixylylborane tetracation and its bis-thiophene analogue revealed efficient photo-induced singlet oxygen production, with the consequent biological implications. Thus, both analogues bind strongly to ds-DNA and BSA, very efficiently enter living human cells, accumulate in several different cytoplasmic organelles with no toxic effect but, under intense visible light irradiation, they exhibit almost instantaneous and very strong cytotoxic effects, presumably attributed to singlet oxygen production. Thus, both compounds are intriguing theranostic agents, whose intracellular and probably intra-tissue location can be monitored by strong fluorescence, allowing switching on of the strong bioactivity by well-focused visible light.


Assuntos
Elétrons , Água , Fluorescência , Humanos , Oxigênio Singlete , Tiofenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...