Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Biology (Basel) ; 13(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38392321

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common and lethal type of head and neck cancer in the world. Variable response and acquisition of resistance to traditional therapies show that it is essential to develop novel strategies that can provide better outcomes for the patient. Understanding of cellular and molecular mechanisms of cell death control has increased rapidly in recent years. Activation of cell death pathways, such as the emerging forms of non-apoptotic programmed cell death, including ferroptosis, pyroptosis, necroptosis, NETosis, parthanatos, mitoptosis and paraptosis, may represent clinically relevant novel therapeutic opportunities. This systematic review summarizes the recently described forms of cell death in OSCC, highlighting their potential for informing diagnosis, prognosis and treatment. Original studies that explored any of the selected cell deaths in OSCC were included. Electronic search, study selection, data collection and risk of bias assessment tools were realized. The literature search was carried out in four databases, and the extracted data from 79 articles were categorized and grouped by type of cell death. Ferroptosis, pyroptosis, and necroptosis represented the main forms of cell death in the selected studies, with links to cancer immunity and inflammatory responses, progression and prognosis of OSCC. Harnessing the potential of these pathways may be useful in patient-specific prognosis and individualized therapy. We provide perspectives on how these different cell death types can be integrated to develop decision tools for diagnosis, prognosis, and treatment of OSCC.

2.
Cells ; 12(19)2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37830632

RESUMO

Cell-in-cell (CIC) structures contribute to tumor aggressiveness and poor prognosis in oral squamous cell carcinoma (OSCC). In vitro 3D models may contribute to the understanding of the underlying molecular mechanisms of these events. We employed a spheroid model to study the CIC structures in OSCC. Spheroids were obtained from OSCC (HSC3) and cancer-associated fibroblast (CAF) lines using the Nanoshuttle-PLTM bioprinting system (Greiner Bio-One). Spheroid form, size, and reproducibility were evaluated over time (EvosTM XL; ImageJ version 1.8). Slides were assembled, stained (hematoxylin and eosin), and scanned (Axio Imager Z2/VSLIDE) using the OlyVIA System (Olympus Life Science) and ImageJ software (NIH) for cellular morphology and tumor zone formation (hypoxia and/or proliferative zones) analysis. CIC occurrence, complexity, and morphology were assessed considering the spheroid regions. Well-formed spheroids were observed within 6 h of incubation, showing the morphological aspects of the tumor microenvironment, such as hypoxic (core) and proliferative zone (periphery) formation. CIC structures were found in both homotypic and heterotypic groups, predominantly in the proliferative zone of the mixed HSC3/CAF spheroids. "Complex cannibalism" events were also noted. These results showcase the potential of this model in further studies on CIC morphology, formation, and relationship with tumor prognosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Reprodutibilidade dos Testes , Microambiente Tumoral
3.
Bioengineering (Basel) ; 10(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36978739

RESUMO

In vivo, quiescent fibroblasts reside in three-dimensional connective tissues and are activated in response to tissue injury before proliferating rapidly and becoming migratory and contractile myofibroblasts. When deregulated, chronic activation drives fibrotic disease. Fibroblasts cultured on stiff 2D surfaces display a partially activated phenotype, whilst many 3D environments limit fibroblast activation. Cell mechanotransduction, spreading, polarity, and integrin expression are controlled by material mechanical properties and micro-architecture. Between 3D culture systems, these features are highly variable, and the challenge of controlling individual properties without altering others has led to an inconsistent picture of fibroblast behaviour. Electrospinning offers greater control of mechanical properties and microarchitecture making it a valuable model to study fibroblast activation behaviour in vitro. Here, we present a comprehensive characterisation of the activation traits of human oral fibroblasts grown on a microfibrous scaffold composed of electrospun polycaprolactone. After over 7 days in the culture, we observed a reduction in proliferation rates compared to cells cultured in 2D, with low KI67 expression and no evidence of cellular senescence. A-SMA mRNA levels fell, and the expression of ECM protein-coding genes also decreased. Electrospun fibrous scaffolds, therefore, represent a tuneable platform to investigate the mechanisms of fibroblast activation and their roles in fibrotic disease.

4.
Biomedicines ; 11(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36979754

RESUMO

Neuropathic pain is a debilitating condition affecting around 8% of the adult population in the UK. The pathophysiology is complex and involves a wide range of processes, including alteration of neuronal excitability and synaptic transmission, dysregulated intracellular signalling and activation of pro-inflammatory immune and glial cells. In the past 15 years, multiple miRNAs-small non-coding RNA-have emerged as regulators of neuropathic pain development. They act by binding to target mRNAs and preventing the translation into proteins. Due to their short sequence (around 22 nucleotides in length), they can have hundreds of targets and regulate several pathways. Several studies on animal models have highlighted numerous miRNAs that play a role in neuropathic pain development at various stages of the nociceptive pathways, including neuronal excitability, synaptic transmission, intracellular signalling and communication with non-neuronal cells. Studies on animal models do not always translate in the clinic; fewer studies on miRNAs have been performed involving human subjects with neuropathic pain, with differing results depending on the specific aetiology underlying neuropathic pain. Further studies using human tissue and liquid samples (serum, plasma, saliva) will help highlight miRNAs that are relevant to neuropathic pain diagnosis or treatment, as biomarkers or potential drug targets.

5.
J Oncol ; 2022: 5277440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36471888

RESUMO

Objectives: In the progression of cancer, interactions between cancer cells and cancer-associated fibroblasts (CAFs) play important roles. Cancer cell invasion is facilitated by filamentous actin (F-actin)-rich membrane protrusions called invadopodia, and the relationship between CAFs and invadopodia has been unclear. We used oral squamous cell carcinoma (OSCC) to investigate CAFs' effects on the formation of invadopodia, and we assessed the expressions of invadopodia markers and CAF markers ex vivo and their relationship with clinical parameters and survival. Materials and Methods: We examined the effect of culture with normal oral fibroblast (NOF)-derived and CAF-derived conditioned medium on the migration and invasion of two OSCC-derived cell lines using Transwells in the absence/presence of Matrigel. Immunoblotting and immunocytochemistry were conducted to assess the expressions of the invadopodia markers tyrosine kinase substrate 5 (Tks5) and membrane type 1 matrix metalloproteinase (MT1-MMP). We also used immunohistochemistry to examine patients with OSCC for an evaluation of the relationship between the CAF marker alpha smooth muscle actin (αSMA) and the expression of Tks5. The patients' survival was also assessed. Results: Compared to the use of culture medium alone, NOF-CM and CAF-CM both significantly increased the OSCC cells' migration and invasion (p < 0.05), and they significantly increased the expressions of both Tks5 and MT1-MMP. After the depletion of Tks5, the OSCC cells' migration and invasion abilities decreased. The expression of Tks5 and that of αSMA were correlated with poor survival, and a high expression of both markers was associated with an especially poor prognosis. Conclusions: These results indicate that the formation of invadopodia is (i) important for OSCC cells' migration and invasion and (ii) regulated by the interaction of OSCC cells and stromal fibroblasts.

6.
Front Oncol ; 12: 931092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847959

RESUMO

For over a century, cells within other cells have been detected by pathologists as common histopathological findings in tumors, being generally identified as "cell-in-cell" structures. Despite their characteristic morphology, these structures can originate from various processes, such as cannibalism, entosis and emperipolesis. However, only in the last few decades has more attention been given to these events due to their importance in tumor development. In cancers such as oral squamous cell carcinoma, cell-in-cell events have been linked to aggressiveness, metastasis, and therapeutic resistance. This review aims to summarize relevant information about the occurrence of various cell-in-cell phenomena in the context of oral squamous cell carcinoma, addressing their causes and consequences in cancer. The lack of a standard terminology in diagnosing these events makes it difficult to classify the existing cases and to map the behavior and impacts of these structures. Despite being frequently reported in oral squamous cell carcinoma and other cancers, their impacts on carcinogenesis aren't fully understood. Cell-in-cell formation is seen as a survival mechanism in the face of a lack of nutritional availability, an acid microenvironment and potential harm from immune cell defense. In this deadly form of competition, cells that engulf other cells establish themselves as winners, taking over as the predominant and more malignant cell population. Understanding the link between these structures and more aggressive behavior in oral squamous cell carcinoma is of paramount importance for their incorporation as part of a therapeutic strategy.

7.
Nat Rev Mol Cell Biol ; 23(5): 369-382, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35260831

RESUMO

Extracellular vesicles (EVs) are increasingly recognized as important mediators of intercellular communication. They have important roles in numerous physiological and pathological processes, and show considerable promise as novel biomarkers of disease, as therapeutic agents and as drug delivery vehicles. Intriguingly, however, understanding of the cellular and molecular mechanisms that govern the many observed functions of EVs remains far from comprehensive, at least partly due to technical challenges in working with these small messengers. Here, we highlight areas of consensus as well as contentious issues in our understanding of the intracellular and intercellular journey of EVs: from biogenesis, release and dynamics in the extracellular space, to interaction with and uptake by recipient cells. We define knowledge gaps, identify key questions and challenges, and make recommendations on how to address these.


Assuntos
Vesículas Extracelulares , Transporte Biológico , Biomarcadores/metabolismo , Comunicação Celular , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/metabolismo
8.
Tissue Eng Part B Rev ; 28(3): 569-578, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34102862

RESUMO

Traditional monolayer culture fails to fully recapitulate the in vivo environment of connective tissue cells such as the fibroblast. When cultured on stiff two-dimensional (2D) plastic, fibroblasts become highly proliferative forming broad lamellipodia and stress fibers. Conversely, in different three-dimensional (3D) culture systems, fibroblasts have displayed a diverse array of features; from an "activated" phenotype like that observed in 2D cultures and by myofibroblasts, to a quiescent state that likely better represents in vivo fibroblasts at rest. Today, a plethora of microfabrication techniques have made 3D culture commonplace, for both tissue engineering purposes and in the study of basic biological interactions. However, establishing the in vivo mimetic credentials of different biomimetic materials is not always straightforward, particularly in the context of fibroblast responses. Fibroblast behavior is governed by the complex interplay of biological features such as integrin binding sites, material mechanical properties that influence cellular mechanotransduction, and microarchitectural features like pore and fiber size, as well as chemical cues. Furthermore, fibroblasts are a heterogeneous group of cells with specific phenotypic traits dependent on their tissue of origin. These features have made understanding the influence of biomaterials on fibroblast behavior a challenging task. In this study, we present a review of the strategies used to investigate fibroblast behavior with a focus on the material properties that influence fibroblast activation, a process that becomes pathological in fibrotic diseases and certain cancers. Impact statement This review considers the range of materials that have been used to investigate fibroblast behavior in three-dimensional (3D) culture. It evaluates the merits of each material, the results gained, and the evolving rationale behind the presented studies. We highlight aspects of 3D culture from porosity to polarity and their varied impact on fibroblast behavior. Understanding fibroblast behavior and mechanisms of control in vitro not only serves as a direct therapeutic opportunity in diseases from cancer to fibrosis but also can facilitate progress for future regenerative therapies.


Assuntos
Materiais Biocompatíveis , Mecanotransdução Celular , Materiais Biocompatíveis/farmacologia , Fibroblastos/química , Fibroblastos/metabolismo , Fibrose , Humanos , Engenharia Tecidual
9.
Cells ; 10(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34943822

RESUMO

Over recent decades, the field of cellular senescence has attracted considerable attention due to its association with aging, the development of age-related diseases and cancer. Senescent cells are unable to proliferate, as the pathways responsible for initiating the cell cycle are irreversibly inhibited. Nevertheless, senescent cells accumulate in tissues and develop a pro-inflammatory secretome, known as the senescence-associated secretory phenotype (SASP), which can have serious deleterious effects if not properly regulated. There is increasing evidence suggesting senescent cells contribute to different stages of carcinogenesis in different anatomical sites, mainly due to the paracrine effects of the SASP. Thus, a new therapeutic field, known as senotherapeutics, has developed. In this review, we aim to discuss the molecular mechanisms underlying the senescence response and its relationship with cancer development, focusing on the link between senescence-related inflammation and cancer. We will also discuss different approaches to target senescent cells that might be of use for cancer treatment.


Assuntos
Senescência Celular , Neoplasias/patologia , Animais , Biomarcadores Tumorais/metabolismo , Humanos , Modelos Biológicos , Fenótipo Secretor Associado à Senescência , Transdução de Sinais
10.
PLoS One ; 16(11): e0256812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34762649

RESUMO

Transforming growth factor-beta 1 (TGF-ß1), a pro-fibrotic tumour-derived factor promotes fibroblast differentiation in the tumour microenvironment and is thought to contribute to the development of pro-tumourigenic cancer-associated fibroblasts (CAFs) by promoting myofibroblast differentiation. miRNA dysregulation has been demonstrated in myofibroblast transdifferentiation and CAF activation, however, their expression varies among cell types and with the method of fibroblast induction. Here, the expression profile of miRNA in human primary oral fibroblasts treated with TGF-ß1, to derive a myofibroblastic, CAF-like phenotype, was determined compared to untreated fibroblasts. Myofibroblast transdifferentiation was determined by the expression of alpha-smooth muscle actin (α-SMA) and fibronectin-1 extra domain A (FN-EDA1) using quantitative real-time PCR (qRT-PCR) and western blot. The formation of stress fibres was assessed by fluorescence microscopy, and associated changes in contractility were assessed using collagen contraction assays. Extracellular vesicles (EVs) were purified by using size exclusion chromatography and ultracentrifugation and their size and concentration were determined by nanoparticle tracking analysis. miRNA expression profiling in oral fibroblasts treated with TGF-ß1 and their extracellular vesicles was carried out using tiling low-density array cards. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to perform functional and pathway enrichment analysis of target genes. In this study, TGF-ß1 induced a myofibroblastic phenotype in normal oral fibroblasts as assessed by expression of molecular markers, the formation of stress fibres and increased contractility. TaqMan Low-Density Array (TLDA) analysis demonstrated that miR-503 and miR-708 were significantly upregulated, while miR-1276 was significantly downregulated in TGF-ß1-treated oral fibroblasts (henceforth termed experimentally-derived CAF, eCAF). The gene functional enrichment analysis showed that the candidate miRNAs have the potential to modulate various pathways; including the Ras associated protein 1 (Rap1), PI3K-Akt, and tumour necrosis factor (TNF) signalling pathways. In addition, altered levels of several miRNAs were detected in eCAF EV, including miR-142 and miR-222. No differences in size or abundance of EV were detected between eCAF and normal oral fibroblast (NOF). Little overlap was observed between changes in cellular and EV miRNA profiles, suggesting the possibility of selective loading of EV miRNA. The study reveals miRNA expression signature could be involved in myofibroblast transdifferentiation and the miRNA cargo of their EV, providing novel insight into the involvement of miRNA in CAF development and function.


Assuntos
Transdiferenciação Celular/fisiologia , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Miofibroblastos/citologia , Actinas/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/farmacologia
11.
Crit Rev Oncol Hematol ; 164: 103397, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34146679

RESUMO

Head and neck cancer is globally challenging due to the resistance to therapy and aggressive behavior leading to high rates of mortality. Recent findings show that the tumor microenvironment plays a role in the maintenance and progression of many solid tumors, including head and neck cancer. The mechanisms involved in the modulation and regulation of the tumor microenvironment remain poorly understood. Increasing evidence suggests that epigenetic events can modulate the crosstalk between neoplastic and non-neoplastic cells during tumor progression. In this review, we explore the current understanding of the involvement of epigenetic events in the modulation of the tumor microenvironment and its impact on head and neck cancer behavior. We also explore the latest therapeutic strategies that use epigenetic-modulating drugs to manage tumor growth and progression.


Assuntos
Neoplasias de Cabeça e Pescoço , Microambiente Tumoral , Epigênese Genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Microambiente Tumoral/genética
12.
J Cell Sci ; 134(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33526711

RESUMO

There is compelling evidence that senescent cells, through the senescence-associated secretory phenotype (SASP), can promote malignant transformation and invasion. Interleukin-1 (IL-1) is a key mediator of this cytokine network, but the control of its activity in the senescence programme has not been elucidated. IL-1 signalling is regulated by IL-1RA, which has four variants. Here, we show that expression of intracellular IL-1RA type 1 (icIL-1RA1), which competitively inhibits binding of IL-1 to its receptor, is progressively lost during oral carcinogenesis ex vivo and that the pattern of expression is associated with keratinocyte replicative fate in vitro We demonstrate that icIL-1RA1 is an important regulator of the SASP in mortal cells, as CRISPR/Cas9-mediated icIL-1RA1 knockdown in normal and mortal dysplastic oral keratinocytes is followed by increased IL-6 and IL-8 secretion, and rapid senescence following release from RhoA-activated kinase inhibition. Thus, we suggest that downregulation of icIL-1RA1 in early stages of the carcinogenesis process can enable the development of a premature and deregulated SASP, creating a pro-inflammatory state in which cancer is more likely to arise.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Sialoglicoproteínas , Senescência Celular/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Interleucina-1 , Queratinócitos
14.
Oral Dis ; 27(6): 1383-1393, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32593227

RESUMO

BACKGROUND: Cancer stem cells are responsible for tumour progression and chemoresistance. Fibroblasts surrounding a tumour also promote progression and fibroblast "activation" is an independent prognostic marker in oral cancer. Cancer stem cells may therefore promote tumourigenesis through communication with stromal fibroblasts. METHODS: Cancer stem cells were isolated from oral cancer cell lines by adherence to fibronectin or cisplatin resistance. Fibroblasts were exposed to conditioned medium from these cells, and the activation markers, alpha smooth muscle actin and interleukin-6, were assessed using qPCR and immunofluorescence. Stem cell markers and smooth muscle actin were examined in oral cancer tissue using immunohistochemistry. RESULTS: Adherent and chemoresistant cells expressed increased levels of stem cell markers CD24, CD44 and CD29 compared with unsorted cells. Adherent cells exhibited lower growth rate, higher colony forming efficiency and increased cisplatin resistance than unsorted cells. Smooth muscle actin and Interleukin-6 expression were increased in fibroblasts exposed to conditioned medium. In oral cancer tissue, there was a positive correlation between expression of αSMA and stem cell markers. CONCLUSIONS: Adherence to fibronectin and chemoresistance isolates stem-like cells that can activate fibroblasts, which together with a correlation between markers of both in vivo, provides a mechanism by which such cells drive tumourigenesis.


Assuntos
Carcinogênese , Fibroblastos , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Meios de Cultivo Condicionados , Humanos , Células-Tronco Neoplásicas , Células Estromais
15.
Tissue Eng Part B Rev ; 27(5): 530-538, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33126845

RESUMO

Extracellular vesicles (Evs) are membrane-enclosed vesicles secreted by all cell types that mediate cell-cell communication via their protein, lipid, carbohydrate, and nucleic acid (RNA, DNA) cargo. EVs are involved in a multitude of physiological processes, including development, cell differentiation, and angiogenesis, and have been implicated in tissue repair. Thus, they have been suggested to offer opportunities for the development of novel cell-free tissue engineering (TE) approaches. In this review, we provide an overview of current understanding and emerging applications of EVs in TE and address opportunities and challenges for clinical translation. In addition, we discuss systemic and local routes of delivery of EVs and the advantages and disadvantages of different biomaterials in providing a substrate for the sustained release of EVs in vivo. Impact statement Extracellular vesicles (EVs) are nanoscale, membrane-bound vesicles released by most, if not all, cells in the body. They are implicated in a wide range of physiological processes and diseases ranging from cancer to neurodegeneration, and hold huge potential as mediators of tissue regeneration. This has led to an explosion of interest in using EVs in a variety of tissue engineering applications. In this review, we provide an overview of current progress in the field and highlight the opportunities and challenges of harnessing the potential of EVs in regenerative medicine.


Assuntos
Vesículas Extracelulares , Medicina Regenerativa , Engenharia Tecidual
16.
Biochem Soc Trans ; 48(5): 2335-2345, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33125481

RESUMO

Extracellular vesicles (EV) are implicated in a variety of functions affecting the extracellular matrix (ECM), including matrix degradation, cross-linking of matrix proteins and matrix calcification. These processes are important in many physiological contexts such as angiogenesis and wound healing, and dysregulation of ECM homeostasis contributes to a wide range of diseases including fibrosis, cancer and arthritis. Most studies of EV have focussed on their roles in cell:cell communication, but EV can exist as integral components of the ECM. By far the most well-characterised ECM-resident EV are matrix vesicles (MV) in bone, but the broader role of EV in the ECM is not well understood. This review will explore what is known of the roles of EV in the ECM and will also highlight the similarities and differences between MV and other EV.


Assuntos
Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Homeostase , Neovascularização Fisiológica , Animais , Artrite Reumatoide/metabolismo , Osso e Ossos/metabolismo , Comunicação Celular , Exossomos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias/metabolismo , Ácidos Nucleicos/metabolismo , Osteoblastos/metabolismo , Transdução de Sinais , Cicatrização
17.
FEBS Open Bio ; 10(12): 2740-2749, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33095981

RESUMO

Senescent cells accumulate in different organs and develop a senescence-associated secretory phenotype (SASP), associated with the development of age-related pathologies. The constitution of the SASP varies among cell types and with the method of senescence induction; nevertheless, there is substantial overlap among SASPs, especially the presence of pro-inflammatory cytokines such as IL-1ß, IL-1α, IL-6 and IL-8. These cytokines are highly conserved among SASPs and are implicated in the development of several cancers. Here, we report that ROCK inhibition by Y-27632 reduces levels of IL-1α, IL-1ß, IL-6 and IL-8 secreted by senescent normal and dysplastic oral keratinocytes without affecting the permanent cell growth arrest. The data indicate some inflammatory genes downregulated by Y-27632 remain downregulated even after repeated passage in the absence of Y-27632. We propose ROCK kinase inhibition as a novel alternative to current strategies to modulate the inflammatory components of the SASP, without compromising the permanent cell growth arrest. This observation potentially has wide clinical applications, given the involvement of senescence in cancer and a wide range of age-related disease. It also suggests care should be exercised when using Y-27632 to facilitate cell expansion of primary cells, as its effects on gene expression are not entirely reversible.


Assuntos
Amidas/farmacologia , Senescência Celular/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Células Cultivadas , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Humanos , Queratinócitos/metabolismo , Quinases Associadas a rho/metabolismo
18.
Clin Sci (Lond) ; 134(18): 2489-2501, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32990314

RESUMO

Angiotensin-converting enzyme (ACE) is a zinc membrane metallopeptidase that plays a key role in regulating vasoactive peptide levels and hence cardiovascular activity through its conversion of angiotensin I (Ang I) to Ang II and its metabolism of bradykinin. The discovery of its homologue, ACE2, 20 years ago has led to intensive comparisons of these two enzymes revealing surprising structural, catalytic and functional distinctions between them. ACE2 plays multiple roles not only as a vasopeptidase but also as a regulator of amino acid transport and serendipitously as a viral receptor, mediating the cellular entry of the coronaviruses causing severe acute respiratory syndrome (SARS) and, very recently, COVID-19. Catalytically, ACE2 functions as a monocarboxypeptidase principally converting the vasoconstrictor angiotensin II to the vasodilatory peptide Ang-(1-7) thereby counterbalancing the action of ACE on the renin-angiotensin system (RAS) and providing a cardioprotective role. Unlike ACE, ACE2 does not metabolise bradykinin nor is it inhibited by classical ACE inhibitors. However, it does convert a number of other regulatory peptides in vitro and in vivo. Interest in ACE2 biology and its potential as a possible therapeutic target has surged in recent months as the COVID-19 pandemic rages worldwide. This review highlights the surprising discoveries of ACE2 biology during the last 20 years, its distinctions from classical ACE and the therapeutic opportunities arising from its multiple biological roles.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Angiotensina II/efeitos dos fármacos , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/farmacologia , COVID-19 , Infecções por Coronavirus/metabolismo , Humanos , Pandemias , Pneumonia Viral/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2 , Vasoconstritores/farmacologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-32665206

RESUMO

Oral diseases, including cancers, affect 3.5 billion people globally and remain largely untreated in low- to middle-income countries because of lack of resources. In Papua New Guinea (PNG), oral cancer has, for many decades, been identified as the most common cancer in men, but as the GLOBOCAN 2018 data are estimates extrapolated from surrounding countries, the real prevalence of this disease is not known. The PNG National Health Plan (2011-2020) highlights the need to improve health care, but oral health is not identified as a priority. Alcohol, tobacco, and areca nut/betel quid, which are the social and commercial determinants of oral cancer, are common risk factors, and there are robust data linking these risk factors to oral cancer in PNG. Our recent Global Challenges Research Fund Workshop on Oral Cancer, held in Port Moresby, PNG, brought together a number of researchers in oral cancer epidemiology and translational science with clinicians from PNG to assess the current situation and plan ways to move forward. In this article, we will review the literature on oral cancer in PNG, and make suggestions as to how, collaboratively, we can address the issues identified, ultimately, for the benefit of the people of PNG.


Assuntos
Doenças da Boca , Neoplasias Bucais , Areca , Humanos , Masculino , Neoplasias Bucais/epidemiologia , Papua Nova Guiné/epidemiologia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...