Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Drug Discov ; 22(8): 641-661, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37308581

RESUMO

Antibody-drug conjugates (ADCs) combine the specificity of monoclonal antibodies with the potency of highly cytotoxic agents, potentially reducing the severity of side effects by preferentially targeting their payload to the tumour site. ADCs are being increasingly used in combination with other agents, including as first-line cancer therapies. As the technology to produce these complex therapeutics has matured, many more ADCs have been approved or are in late-phase clinical trials. The diversification of antigenic targets as well as bioactive payloads is rapidly broadening the scope of tumour indications for ADCs. Moreover, novel vector protein formats as well as warheads targeting the tumour microenvironment are expected to improve the intratumour distribution or activation of ADCs, and consequently their anticancer activity for difficult-to-treat tumour types. However, toxicity remains a key issue in the development of these agents, and better understanding and management of ADC-related toxicities will be essential for further optimization. This Review provides a broad overview of the recent advances and challenges in ADC development for cancer treatment.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Antineoplásicos/efeitos adversos , Neoplasias/terapia , Anticorpos Monoclonais/uso terapêutico , Microambiente Tumoral
2.
Mol Pharm ; 16(9): 3926-3937, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31287952

RESUMO

Antibody-drug conjugates are an emerging class of cancer therapeutics constructed from monoclonal antibodies conjugated with small molecule effectors. First-generation molecules of this class often employed heterogeneous conjugation chemistry, but many site-specifically conjugated ADCs have been described recently. Here, we undertake a systematic comparison of ADCs made with the same antibody and the same macrocyclic maytansinoid effector but conjugated either heterogeneously at lysine residues or site-specifically at cysteine residues. Characterization of these ADCs in vitro reveals generally similar properties, including a similar catabolite profile, a key element in making a meaningful comparison of conjugation chemistries. In a mouse model of cervical cancer, the lysine-conjugated ADC affords greater efficacy on a molar payload basis. Rather than making general conclusions about ADCs conjugated by a particular chemistry, we interpret these results as highlighting the complexity of ADCs and the interplay between payload class, linker chemistry, target antigen, and other variables that determine efficacy in a given setting.


Assuntos
Anticorpos Monoclonais/química , Cisteína/química , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Lisina/química , Maitansina/imunologia , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Imunoconjugados/administração & dosagem , Injeções Intravenosas , Camundongos , Camundongos SCID , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Annu Rev Med ; 69: 191-207, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29414262

RESUMO

The concept of exploiting the specific binding properties of monoclonal antibodies as a mechanism for selective delivery of cytotoxic agents to tumor cells is an attractive solution to the challenge of increasing the therapeutic index of cell-killing agents for treating cancer. All three parts of an antibody-drug conjugate (ADC)-the antibody, the cytotoxic payload, and the linker chemistry that joins them together-as well as the biologic properties of the cell-surface target antigen are important in designing an effective anticancer agent. The approval of brentuximab vedotin in 2011 for treating relapsed Hodgkin's lymphoma and systemic anaplastic large cell lymphoma, and the approval of ado-trastuzumab emtansine in 2013 for treating HER2-positive metastatic breast cancer, have sparked vigorous research in the field, with >65 ADCs currently in clinical evaluation. This review highlights the ADCs that are approved for marketing, in pivotal clinical trials, or in at least phase II clinical development for treating both hematologic malignancies and solid tumors.


Assuntos
Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Ado-Trastuzumab Emtansina , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/secundário , Brentuximab Vedotin , Desenvolvimento de Medicamentos , Doença de Hodgkin/tratamento farmacológico , Humanos , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Maitansina/análogos & derivados , Maitansina/uso terapêutico , Trastuzumab/uso terapêutico
4.
Adv Ther ; 34(5): 1015-1035, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28361465

RESUMO

Attaching a cytotoxic "payload" to an antibody to form an antibody-drug conjugate (ADC) provides a mechanism for selective delivery of the cytotoxic agent to cancer cells via the specific binding of the antibody to cancer-selective cell surface molecules. The first ADC to receive marketing authorization was gemtuzumab ozogamicin, which comprises an anti-CD33 antibody conjugated to a highly potent DNA-targeting antibiotic, calicheamicin, approved in 2000 for treating acute myeloid leukemia. It was withdrawn from the US market in 2010 following an unsuccessful confirmatory trial. The development of two classes of highly potent microtubule-disrupting agents, maytansinoids and auristatins, as payloads for ADCs resulted in approval of brentuximab vedotin in 2011 for treating Hodgkin lymphoma and anaplastic large cell lymphoma, and approval of ado-trastuzumab emtansine in 2013 for treating HER2-positive breast cancer. Their success stimulated much research into the ADC approach, with >60 ADCs currently in clinical evaluation, mostly targeting solid tumors. Five ADCs have advanced into pivotal clinical trials for treating various solid tumors-platinum-resistant ovarian cancer, mesothelioma, triple-negative breast cancer, glioblastoma, and small cell lung cancer. The level of target expression is a key parameter in predicting the likelihood of patient benefit for all these ADCs, as well as for the approved compound, ado-trastuzumab emtansine. The development of a patient selection strategy linked to target expression on the tumor is thus critically important for identifying the population appropriate for receiving treatment.


Assuntos
Aminobenzoatos/uso terapêutico , Aminoglicosídeos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoconjugados/uso terapêutico , Maitansina/análogos & derivados , Neoplasias/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/uso terapêutico , Ado-Trastuzumab Emtansina , Gemtuzumab , Humanos , Maitansina/uso terapêutico , Neoplasias/imunologia , Trastuzumab
5.
Bioconjug Chem ; 28(5): 1371-1381, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28388844

RESUMO

Antibody-drug conjugates (ADCs) are being actively pursued as a treatment option for cancer following the regulatory approval of brentuximab vedotin (Adcetris) and ado-trastuzumab emtansine (Kadcyla). ADCs consist of a cytotoxic agent conjugated to a targeting antibody through a linker. The two approved ADCs (and most ADCs now in the clinic that use a microtubule disrupting agent as the payload) are heterogeneous conjugates with an average drug-to-antibody ratio (DAR) of 3-4 (potentially ranging from 0 to 8 for individual species). Ado-trastuzumab emtansine employs DM1, a semisynthetic cytotoxic payload of the maytansinoid class, which is conjugated via lysine residues of the antibody to an average DAR of 3.5. To understand the effect of DAR on the preclinical properties of ADCs using maytansinoid cytotoxic agents, we prepared a series of conjugates with a cleavable linker (M9346A-sulfo-SPDB-DM4 targeting folate receptor α (FRα)) or an uncleavable linker (J2898A-SMCC-DM1 targeting the epidermal growth factor receptor (EGFR)) with varying DAR and evaluated their biochemical characteristics, in vivo stability, efficacy, and tolerability. For both formats, a series of ADCs with DARs ranging from low (average of ∼2 and range of 0-4) to very high (average of 10 and range of 7-14) were prepared in good yield with high monomer content and low levels of free cytotoxic agent. The in vitro potency consistently increased with increasing DAR at a constant antibody concentration. We then characterized the in vivo disposition of these ADCs. Pharmacokinetic analysis showed that conjugates with an average DAR below ∼6 had comparable clearance rates, but for those with an average DAR of ∼9-10, rapid clearance was observed. Biodistribution studies in mice showed that these 9-10 DAR ADCs rapidly accumulate in the liver, with maximum localization for this organ at 24-28% percentage injected dose per gram (%ID/g) compared with 7-10% for lower-DAR conjugates (all at 2-6 h post-injection). Our preclinical findings on tolerability and efficacy suggest that maytansinoid conjugates with DAR ranging from 2 to 6 have a better therapeutic index than conjugates with very high DAR (∼9-10). These very high DAR ADCs suffer from decreased efficacy, likely due to faster clearance. These results support the use of DAR 3-4 for maytansinoid ADCs but suggest that the exploration of lower or higher DAR may be warranted depending on the biology of the target antigen.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos Fitogênicos/farmacocinética , Imunoconjugados/farmacocinética , Maitansina/farmacocinética , Animais , Antineoplásicos Fitogênicos/farmacologia , Feminino , Humanos , Imunoconjugados/farmacologia , Células KB , Maitansina/farmacologia , Camundongos , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Cancer Ther ; 15(8): 1870-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27216304

RESUMO

The promise of tumor-selective delivery of cytotoxic agents in the form of antibody-drug conjugates (ADC) has now been realized, evidenced by the approval of two ADCs, both of which incorporate highly cytotoxic tubulin-interacting agents, for cancer therapy. An ongoing challenge remains in identifying potent agents with alternative mechanisms of cell killing that can provide ADCs with high therapeutic indices and favorable tolerability. Here, we describe the development of a new class of potent DNA alkylating agents that meets these objectives. Through chemical design, we changed the mechanism of action of our novel DNA cross-linking agent to a monofunctional DNA alkylator. This modification, coupled with linker optimization, generated ADCs that were well tolerated in mice and demonstrated robust antitumor activity in multiple tumor models at doses 1.5% to 3.5% of maximally tolerated levels. These properties underscore the considerable potential of these purpose-created, unique DNA-interacting conjugates for broadening the clinical application of ADC technology. Mol Cancer Ther; 15(8); 1870-8. ©2016 AACR.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Imunoconjugados/farmacologia , Animais , Antineoplásicos Alquilantes/química , Efeito Espectador , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/química , DNA/metabolismo , Adutos de DNA , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Imunoconjugados/química , Camundongos , Estrutura Molecular , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Cancer Ther ; 15(6): 1311-20, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27197308

RESUMO

A triglycyl peptide linker (CX) was designed for use in antibody -: drug conjugates (ADC), aiming to provide efficient release and lysosomal efflux of cytotoxic catabolites within targeted cancer cells. ADCs comprising anti-epithelial cell adhesion molecule (anti-EpCAM) and anti-EGFR antibodies with maytansinoid payloads were prepared using CX or a noncleavable SMCC linker (CX and SMCC ADCs). The in vitro cytotoxic activities of CX and SMCC ADCs were similar for several cancer cell lines; however, the CX ADC was more active (5-100-fold lower IC50) than the SMCC ADC in other cell lines, including a multidrug-resistant line. Both CX and SMCC ADCs showed comparable MTDs and pharmacokinetics in CD-1 mice. In Calu-3 tumor xenografts, antitumor efficacy was observed with the anti-EpCAM CX ADC at a 5-fold lower dose than the corresponding SMCC ADC in vivo Similarly, the anti-EGFR CX ADC showed improved antitumor activity over the respective SMCC conjugate in HSC-2 and H1975 tumor models; however, both exhibited similar activity against FaDu xenografts. Mechanistically, in contrast with the charged lysine-linked catabolite of SMCC ADC, a significant fraction of the carboxylic acid catabolite of CX ADC could be uncharged in the acidic lysosomes, and thus diffuse out readily into the cytosol. Upon release from tumor cells, CX catabolites are charged at extracellular pH and do not penetrate and kill neighboring cells, similar to the SMCC catabolite. Overall, these data suggest that CX represents a promising linker option for the development of ADCs with improved therapeutic properties. Mol Cancer Ther; 15(6); 1311-20. ©2016 AACR.


Assuntos
Molécula de Adesão da Célula Epitelial/antagonistas & inibidores , Receptores ErbB/antagonistas & inibidores , Imunoconjugados/administração & dosagem , Maitansina/química , Neoplasias/tratamento farmacológico , Peptídeos/síntese química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Dose Máxima Tolerável , Camundongos , Camundongos SCID , Peptídeos/química , Peptídeos/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Bioconjug Chem ; 27(7): 1588-98, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27174129

RESUMO

Antibody-drug conjugates (ADCs) have become a widely investigated modality for cancer therapy, in part due to the clinical findings with ado-trastuzumab emtansine (Kadcyla). Ado-trastuzumab emtansine utilizes the Ab-SMCC-DM1 format, in which the thiol-functionalized maytansinoid cytotoxic agent, DM1, is linked to the antibody (Ab) via the maleimide moiety of the heterobifunctional SMCC linker. The pharmacokinetic (PK) data for ado-trastuzumab emtansine point to a faster clearance for the ADC than for total antibody. Cytotoxic agent release in plasma has been reported with nonmaytansinoid, cysteine-linked ADCs via thiol-maleimide exchange, for example, brentuximab vedotin. For Ab-SMCC-DM1 ADCs, however, the main catabolite reported is lysine-SMCC-DM1, the expected product of intracellular antibody proteolysis. To understand these observations better, we conducted a series of studies to examine the stability of the thiol-maleimide linkage, utilizing the EGFR-targeting conjugate, J2898A-SMCC-DM1, and comparing it with a control ADC made with a noncleavable linker that lacked a thiol-maleimide adduct (J2898A-(CH2)3-DM). We employed radiolabeled ADCs to directly measure both the antibody and the ADC components in plasma. The PK properties of the conjugated antibody moiety of the two conjugates, J2898A-SMCC-DM1 and J2898A-(CH2)3-DM (each with an average of 3.0 to 3.4 maytansinoid molecules per antibody), appear to be similar to that of the unconjugated antibody. Clearance values of the intact conjugates were slightly faster than those of the Ab components. Furthermore, J2898A-SMCC-DM1 clears slightly faster than J2898A-(CH2)3-DM, suggesting that there is a fraction of maytansinoid loss from the SMCC-DM1 ADC, possibly through a thiol-maleimide dependent mechanism. Experiments on ex vivo stability confirm that some loss of maytansinoid from Ab-SMCC-DM1 conjugates can occur via thiol elimination, but at a slower rate than the corresponding rate of loss reported for thiol-maleimide links formed at thiols derived by reduction of endogenous cysteine residues in antibodies, consistent with expected differences in thiol-maleimide stability related to thiol pKa. These findings inform the design strategy for future ADCs.


Assuntos
Imunoconjugados/química , Imunoconjugados/farmacocinética , Lisina/química , Maleimidas/química , Maitansina/química , Animais , Estabilidade de Medicamentos , Camundongos , Relação Estrutura-Atividade
10.
Curr Opin Immunol ; 40: 14-23, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26963132

RESUMO

The clinical success of Adcetris(®) (brentuximab vedotin) and Kadcyla(®) (ado-trastuzumab emtansine) has sparked clinical development of novel ADCs. These powerful anti-cancer agents are designed to allow specific targeting of highly potent cytotoxic agents to tumor cells while sparing healthy tissues. Despite the use of tumor-specific antibodies, the emerging clinical data with ADCs indicates that adverse effects frequently occur before ADCs have reached their optimal therapeutic dose, resulting in a relatively narrow therapeutic window. This review summarizes the therapeutic window of ADCs currently in clinical development, along with some strategies that may help to widen the window.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoconjugados/uso terapêutico , Imunoterapia/métodos , Imunotoxinas/uso terapêutico , Maitansina/análogos & derivados , Neoplasias/terapia , Ado-Trastuzumab Emtansina , Animais , Brentuximab Vedotin , Protocolos Clínicos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Imunoterapia/tendências , Maitansina/uso terapêutico , Neoplasias/imunologia , Medição de Risco , Trastuzumab
11.
MAbs ; 8(1): 1-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26716992

RESUMO

An important step in drug development is the assignment of an International Nonproprietary Name (INN) by the World Health Organization (WHO) that provides healthcare professionals with a unique and universally available designated name to identify each pharmaceutical substance. Monoclonal antibody INNs comprise a -mab suffix preceded by a substem indicating the antibody type, e.g., chimeric (-xi-), humanized (-zu-), or human (-u-). The WHO publishes INN definitions that specify how new monoclonal antibody therapeutics are categorized and adapts the definitions to new technologies. However, rapid progress in antibody technologies has blurred the boundaries between existing antibody categories and created a burgeoning array of new antibody formats. Thus, revising the INN system for antibodies is akin to aiming for a rapidly moving target. The WHO recently revised INN definitions for antibodies now to be based on amino acid sequence identity. These new definitions, however, are critically flawed as they are ambiguous and go against decades of scientific literature. A key concern is the imposition of an arbitrary threshold for identity against human germline antibody variable region sequences. This leads to inconsistent classification of somatically mutated human antibodies, humanized antibodies as well as antibodies derived from semi-synthetic/synthetic libraries and transgenic animals. Such sequence-based classification implies clear functional distinction between categories (e.g., immunogenicity). However, there is no scientific evidence to support this. Dialog between the WHO INN Expert Group and key stakeholders is needed to develop a new INN system for antibodies and to avoid confusion and miscommunication between researchers and clinicians prescribing antibodies.


Assuntos
Anticorpos , Animais , Humanos , Terminologia como Assunto
13.
Mol Cancer Ther ; 14(7): 1605-13, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25904506

RESUMO

A majority of ovarian and non-small cell lung adenocarcinoma cancers overexpress folate receptor α (FRα). Here, we report the development of an anti-FRα antibody-drug conjugate (ADC), consisting of a FRα-binding antibody attached to a highly potent maytansinoid that induces cell-cycle arrest and cell death by targeting microtubules. From screening a large panel of anti-FRα monoclonal antibodies, we selected the humanized antibody M9346A as the best antibody for targeted delivery of a maytansinoid payload into FRα-positive cells. We compared M9346A conjugates with various linker/maytansinoid combinations, and found that a conjugate, now denoted as IMGN853, with the N-succinimidyl 4-(2-pyridyldithio)-2-sulfobutanoate (sulfo-SPDB) linker and N(2')-deacetyl-N(2')-(4-mercapto-4-methyl-1-oxopentyl)-maytansine (DM4) exhibited the most potent antitumor activity in several FRα-expressing xenograft tumor models. The level of expression of FRα on the surface of cells was a major determinant in the sensitivity of tumor cells to the cytotoxic effect of the conjugate. Efficacy studies of IMGN853 in xenografts of ovarian cancer and non-small cell lung cancer cell lines and of a patient tumor-derived xenograft model demonstrated that the ADC was highly active against tumors that expressed FRα at levels similar to those found on a large fraction of ovarian and non-small cell lung cancer patient tumors, as assessed by immunohistochemistry. IMGN853 displayed cytotoxic activity against FRα-negative cells situated near FRα-positive cells (bystander cytotoxic activity), indicating its ability to eradicate tumors with heterogeneous expression of FRα. Together, these findings support the clinical development of IMGN853 as a novel targeted therapy for patients with FRα-expressing tumors.


Assuntos
Anticorpos Monoclonais/farmacologia , Receptor 1 de Folato/antagonistas & inibidores , Imunoconjugados/farmacologia , Neoplasias/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Efeito Espectador/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Feminino , Receptor 1 de Folato/imunologia , Humanos , Imunoconjugados/imunologia , Maitansina/análogos & derivados , Maitansina/imunologia , Maitansina/farmacologia , Camundongos Nus , Camundongos SCID , Terapia de Alvo Molecular/métodos , Neoplasias/imunologia , Neoplasias/metabolismo , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia
14.
Mol Pharm ; 12(6): 1703-16, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25856201

RESUMO

Coltuximab ravtansine (SAR3419) is an antibody-drug conjugate (ADC) targeting CD19 created by conjugating a derivative of the potent microtubule-acting cytotoxic agent, maytansine, to a version of the anti-CD19 antibody, anti-B4, that was humanized as an IgG1 by variable domain resurfacing. Four different linker-maytansinoid constructs were synthesized (average ∼3.5 maytansinoids/antibody for each) to evaluate the impact of linker-payload design on the activity of the maytansinoid-ADCs targeting CD19. The ADC composed of DM4 (N(2')-deacetyl-N(2')-[4-mercapto-4-methyl-1-oxopentyl]maytansine) conjugated to antibody via the N-succinimidyl-4-(2-pyridyldithio)butyrate (SPDB) linker was selected for development as SAR3419. A molar ratio for DM4/antibody of between 3 and 5 was selected for the final design of SAR3419. Evaluation of SAR3419 in Ramos tumor xenograft models showed that the minimal effective single dose was about 50 µg/kg conjugated DM4 (∼2.5 mg/kg conjugated antibody), while twice this dose gave complete regressions in 100% of the mice. SAR3419 arrests cells in the G2/M phase of the cell cycle, ultimately leading to apoptosis after about 24 h. The results of in vitro and in vivo studies with SAR3419 made with DM4 that was [(3)H]-labeled at the C20 methoxy group of the maytansinoid suggest a mechanism of internalization and intracellular trafficking of SAR3419, ultimately to lysosomes, in which the antibody is fully degraded, releasing lysine-N(ε)-SPDB-DM4 as the initial metabolite. Subsequent intracellular reduction of the disulfide bond between linker and DM4 generates the free thiol species, which is then converted to S-methyl DM4 by cellular methyl transferase activity. We provide evidence to suggest that generation of S-methyl DM4 in tumor cells may contribute to in vivo tumor eradication via bystander killing of neighboring tumor cells. Furthermore, we show that S-methyl DM4 is converted to the sulfoxide and sulfone derivatives in the liver, suggesting that hepatic catabolism of the payload to less cytotoxic maytansinoid species contributes to the overall therapeutic window of SAR3419. This compound is currently in phase II clinical evaluation for the treatment of diffuse large B cell lymphoma.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Maitansina/análogos & derivados , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Fase G2/efeitos dos fármacos , Humanos , Fígado/metabolismo , Linfoma/tratamento farmacológico , Maitansina/química , Maitansina/farmacocinética , Maitansina/uso terapêutico , Camundongos , Camundongos SCID , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Pharm Res ; 32(11): 3593-603, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25630819

RESUMO

PURPOSE: Many antibody-drug conjugates (ADCs) become active only after antigen-mediated internalization and release of the cytotoxic agent via antibody degradation. Quantifying these processes can provide critical information on the suitability of a particular receptor target or antibody for ADC therapy by providing insight into the amount of cytotoxic agent released. We describe a simple and inexpensive radiolabel assay to monitor this process in cultured cancer cells. METHODS: Monoclonal antibodies were trace-labeled at their lysine residues by treatment with the N-hydroxysuccinimide ester of [(3)H]propionic acid. Human cancer cell cultures were treated with the labeled antibody at concentrations sufficient to saturate the targeted antigen. After washing to remove unbound antibody, cells were incubated and analyzed for antigen expression, conjugate degradation and catabolite formation. Results were compared with data obtained from similar assays run with radiolabeled antibody-[(3)H]maytansinoid conjugates ([(3)H]AMCs). To exemplify the method, studies were conducted with a panel of [(3)H]propionamide-antibodies to evaluate processing efficiency in EGFR-expressing SCCHN cell lines, and in NHL cell lines expressing the B-cell targets CD19, CD20, CD22 and CD37. RESULTS: Use of the [(3)H]propionamide-antibody assay yielded cell-mediated processing results similar to those obtained with corresponding maytansinoid ADCs. Further exploration allowed comparison of expression levels, antigen-dependent degradation, and catabolite formation across a panel of EGFR-expressing SCCHN cell lines, and for multiple targets in various B-cell cancer indications. CONCLUSIONS: The [(3)H]propionamide-antibody assay described here is a sensitive, facile method which enables rapid and robust assessment of relative antibody processing amounts for target, antibody, and cell line evaluation.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Imunoconjugados/farmacologia , Maitansina/análogos & derivados , Maitansina/farmacologia , Terapia de Alvo Molecular , Anticorpos Monoclonais Humanizados/química , Linhagem Celular Tumoral , Humanos , Imunoconjugados/química , Maitansina/química , Ensaio Radioligante , Trítio
16.
J Med Chem ; 57(16): 6949-64, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24967516

RESUMO

Ado-trastuzumab emtansine (T-DM1) is an antibody-drug conjugate that combines the antitumor properties of the humanized anti-human epidermal growth factor receptor 2 (HER2) antibody, trastuzumab, with the maytansinoid, DM1, a potent microtubule-disrupting agent, joined by a stable linker. Upon binding to HER2, the conjugate is internalized via receptor-mediated endocytosis, and an active derivative of DM1 is subsequently released by proteolytic degradation of the antibody moiety within the lysosome. Initial clinical evaluation led to a phase III trial in advanced HER2-positive breast cancer patients who had relapsed after prior treatment with trastuzumab and a taxane, which showed that T-DM1 significantly prolonged progression-free and overall survival with less toxicity than lapatinib plus capecitabine. In 2013, T-DM1 received FDA approval for the treatment of patients with HER2-positive metastatic breast cancer who had previously received trastuzumab and a taxane, separately or in combination, the first ADC to receive full approval based on a randomized study.


Assuntos
Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Maitansina/análogos & derivados , Receptor ErbB-2/metabolismo , Ado-Trastuzumab Emtansina , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/toxicidade , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Maitansina/efeitos adversos , Maitansina/química , Maitansina/farmacocinética , Maitansina/farmacologia , Maitansina/toxicidade , Camundongos , Ratos , Trastuzumab
17.
MAbs ; 6(2): 556-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492307

RESUMO

Lorvotuzumab mertansine (LM) is an antibody-drug conjugate composed of a humanized anti-CD56 antibody, lorvotuzumab, linked via a cleavable disulfide linker to the tubulin-binding maytansinoid DM1. CD56 is expressed on most small cell lung cancers (SCLC), providing a promising therapeutic target for treatment of this aggressive cancer, which has a poor five-year survival rate of only 5-10%. We performed immunohistochemical staining on SCLC tumor microarrays, which confirmed that CD56 is expressed at high levels on most (~74%) SCLC tumors. Conjugation of lorvotuzumab with DM1 did not alter its specific binding to cells and LM demonstrated potent target-dependent cytotoxicity against CD56-positive SCLC cells in vitro. The anti-tumor activity of LM was evaluated against SCLC xenograft models in mice, both as monotherapy and in combination with platinum/etoposide and paclitaxel/carboplatin. Dose-dependent and antigen-specific anti-tumor activity of LM monotherapy was demonstrated at doses as low as 3 mg/kg. LM was highly active in combination with standard-of-care platinum/etoposide therapies, even in relatively resistant xenograft models. LM demonstrated outstanding anti-tumor activity in combination with carboplatin/etoposide, with superior activity over chemotherapy alone when LM was used in combinations at significantly reduced doses (6-fold below the minimally efficacious dose for LM monotherapy). The combination of LM with carboplatin/paclitaxel was also highly active. This study provides the rationale for clinical evaluation of LM as a promising novel targeted therapy for SCLC, both as monotherapy and in combination with chemotherapy.


Assuntos
Anticorpos Monoclonais/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígeno CD56/imunologia , Imunoterapia/métodos , Neoplasias Pulmonares/terapia , Maitansina/análogos & derivados , Maitansina/metabolismo , Carcinoma de Pequenas Células do Pulmão/terapia , Moduladores de Tubulina/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Maitansina/química , Maitansina/imunologia , Camundongos , Camundongos SCID , Carcinoma de Pequenas Células do Pulmão/imunologia , Moduladores de Tubulina/química , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Blood ; 122(20): 3500-10, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24002446

RESUMO

CD37 has gathered renewed interest as a therapeutic target in non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL); however, CD37-directed antibody-drug conjugates (ADCs) have not been explored. Here, we identified a novel anti-CD37 antibody, K7153A, with potent in vitro activity against B-cell lines through multiple mechanisms including apoptosis induction, antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement-dependent cytotoxicity. The antibody was conjugated to the maytansinoid, DM1, a potent antimicrotubule agent, via the thioether linker, N-succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), and the resulting ADC, IMGN529, retained the intrinsic antibody activities and showed enhanced cytotoxic activity from targeted payload delivery. In lymphoma cell lines, IMGN529 induced G2/M cell cycle arrest after internalization and lysosomal processing to lysine-N(ε)-SMCC-DM1 as the sole intracellular maytansinoid metabolite. IMGN529 was highly active against subcutaneous B-cell tumor xenografts in severe combined immunodeficient mice with comparable or better activity than rituximab, a combination of cyclophosphamide, vincristine, and prednisone, or bendamustine. In human blood cells, CD37 is expressed in B cells at similar levels as CD20, and IMGN529 resulted in potent and specific depletion of normal and CLL B cells. These results support evaluation of the CD37-targeted ADC, IMGN529, in clinical trials in patients with B-cell malignancies including NHL and CLL.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Murinos/uso terapêutico , Antígenos de Neoplasias/imunologia , Linfócitos B/efeitos dos fármacos , Imunotoxinas/uso terapêutico , Maitansina/análogos & derivados , Terapia de Alvo Molecular , Tetraspaninas/imunologia , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Murinos/administração & dosagem , Anticorpos Monoclonais Murinos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Linfócitos B/patologia , Cloridrato de Bendamustina , Linhagem Celular Tumoral/efeitos dos fármacos , Ciclofosfamida/administração & dosagem , Citotoxicidade Imunológica/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Imunotoxinas/imunologia , Imunotoxinas/farmacologia , Maitansina/administração & dosagem , Maitansina/farmacologia , Maitansina/uso terapêutico , Camundongos , Camundongos SCID , Compostos de Mostarda Nitrogenada/uso terapêutico , Prednisona/administração & dosagem , Rituximab , Vincristina/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Br J Clin Pharmacol ; 76(2): 248-62, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23173552

RESUMO

Despite considerable effort, application of monoclonal antibody technology has had only modest success in improving treatment outcomes in patients with solid tumours. Enhancing the cancer cell-killing activity of antibodies through conjugation to highly potent cytotoxic 'payloads' to create antibody-drug conjuates (ADCs) offers a strategy for developing anti-cancer drugs of great promise. Early ADCs exhibited side-effect profiles similar to those of 'classical' chemotherapeutic agents and their performance in clinical trials in cancer patients was generally poor. However, the recent clinical development of ADCs that have highly potent tubulin-acting agents as their payloads have profoundly changed the outlook for ADC technology. Twenty-five such ADCs are in clinical development and one, brentuximab vedotin, was approved by the FDA in August, 2011, for the treatment of patients with Hodgkin's lymphoma and patients with anaplastic large cell lymphoma, based on a high rate of durable responses in single arm phase II clinical trials. More recently, a second ADC, trastuzumab emtansine, has shown excellent anti-tumour activity with the presentation of results of a 991-patient randomized phase III trial in patients with HER2-positive metastatic breast cancer. Treatment with this ADC (single agent) resulted in a significantly improved progression-free survival of 9.6 months compared with 6.4 months for lapatinib plus capecitabine in the comparator arm and significantly prolonged overall survival. Besides demonstrating excellent efficacy, these ADCs were remarkably well tolerated. Thus these, and other ADCs in development, promise to achieve the long sought goal of ADC technology, that is, of having compounds with high anti-tumour activity at doses where adverse effects are generally mild.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/efeitos adversos , Antineoplásicos/efeitos adversos , Desenho de Fármacos , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
AAPS J ; 14(4): 799-805, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22875610

RESUMO

The concept of treating cancer with antibody-drug conjugates (ADCs) has gained momentum with the favorable activity and safety of trastuzumab emtansine (T-DM1), SAR3419, and lorvotuzumab mertansine (IMGN901). All three ADCs utilize maytansinoid cell-killing agents which target tubulin and suppress microtubule dynamics. Each ADC utilizes a different optimized chemical linker to attach the maytansinoid to the antibody. Characterizing the absorption, distribution, metabolism, and excretion (ADME) of these ADCs in preclinical animal models is important to understanding their efficacy and safety profiles. The ADME properties of these ADCs in rodents were inferred from studies with radio-labeled ADCs prepared with nonbinding antibodies since T-DM1, SAR3419, IMGN901 all lack cross-reactivity with rodent antigens. For studies exploring tumor localization and activation in tumor-bearing mice, tritium-labeled T-DM1, SAR3419, and IMGN901 were utilized. The chemical nature of the linker was found to have a significant impact on the ADME properties of these ADCs-particularly on the plasma pharmacokinetics and observed catabolites in tumor and liver tissues. Despite these differences, T-DM1, SAR3419, and IMGN901 were all found to facilitate efficient deliveries of active maytansinoid catabolites to the tumor tissue in mouse xenograft models. In addition, all three ADCs were effectively detoxified during hepatobiliary elimination in rodents.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Antineoplásicos/farmacocinética , Maitansina/análogos & derivados , Neoplasias/tratamento farmacológico , Ado-Trastuzumab Emtansina , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos/efeitos adversos , Avaliação Pré-Clínica de Medicamentos , Humanos , Maitansina/efeitos adversos , Maitansina/farmacocinética , Camundongos , Neoplasias/patologia , Distribuição Tecidual , Trastuzumab , Moduladores de Tubulina/efeitos adversos , Moduladores de Tubulina/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...