Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
mBio ; : e0093324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742830

RESUMO

Human papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States and are a major etiological agent of cancers in the anogenital tract and oral cavity. Growing evidence suggests changes in the host microbiome are associated with the natural history and ultimate outcome of HPV infection. We sought to define changes in the host cervicovaginal microbiome during papillomavirus infection, persistence, and pathogenesis using the murine papillomavirus (MmuPV1) cervicovaginal infection model. Cervicovaginal lavages were performed over a time course of MmuPV1 infection in immunocompetent female FVB/N mice and extracted DNA was analyzed by qPCR to track MmuPV1 viral copy number. 16S ribosomal RNA (rRNA) gene sequencing was used to determine the composition and diversity of microbial communities throughout this time course. We also sought to determine whether specific microbial communities exist across the spectrum of MmuPV1-induced neoplastic disease. We, therefore, performed laser-capture microdissection to isolate regions of disease representing all stages of neoplastic disease progression (normal, low- and high-grade dysplasia, and cancer) from female reproductive tract tissue sections from MmuPV1-infected mice and performed 16S rRNA sequencing. Consistent with other studies, we found that the natural murine cervicovaginal microbiome is highly variable across different experiments. Despite these differences in initial microbiome composition between experiments, we observed that MmuPV1 persistence, viral load, and severity of disease influenced the composition of the cervicovaginal microbiome. These studies demonstrate that papillomavirus infection can alter the cervicovaginal microbiome.IMPORTANCEHuman papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States. A subset of HPVs that infect the anogenital tract (cervix, vagina, anus) and oral cavity cause at least 5% of cancers worldwide. Recent evidence indicates that the community of microbial organisms present in the human cervix and vagina, known as the cervicovaginal microbiome, plays a role in HPV-induced cervical cancer. However, the mechanisms underlying this interplay are not well-defined. In this study, we infected the female reproductive tract of mice with a murine papillomavirus (MmuPV1) and found that key aspects of papillomavirus infection and disease influence the host cervicovaginal microbiome. This is the first study to define changes in the host microbiome associated with MmuPV1 infection in a preclinical animal model of HPV-induced cervical cancer. These results pave the way for using MmuPV1 infection models to further investigate the interactions between papillomaviruses and the host microbiome.

2.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339231

RESUMO

Predicting which patients will progress to metastatic disease after surgery for non-metastatic clear cell renal cell carcinoma (ccRCC) is difficult; however, recent data suggest that tumor immune cell infiltration could be used as a biomarker. We evaluated the quantity and type of immune cells infiltrating ccRCC tumors for associations with metastatic progression following attempted curative surgery. We quantified immune cell densities in the tumor microenvironment and validated our findings in two independent patient cohorts with multi-region sampling to investigate the impact of heterogeneity on prognostic accuracy. For non-metastatic ccRCC, increased CD8+ T cell infiltration was associated with a reduced likelihood of progression to metastatic disease. Interestingly, patients who progressed to metastatic disease also had increased percentages of exhausted CD8+ T cells. Finally, we evaluated the spatial heterogeneity of the immune infiltration and demonstrated that patients without metastatic progression had CD8+ T cells in closer proximity to ccRCC cells. These data strengthen the evidence for CD8+ T cell infiltration as a prognostic biomarker in non-metastatic ccRCC and demonstrate that multi-region sampling may be necessary to fully characterize immune infiltration within heterogeneous tumors. Tumor CD8+ T cell infiltration should be investigated as a biomarker in adjuvant systemic therapy clinical trials for high-risk non-metastatic RCC.

3.
STAR Protoc ; 5(1): 102828, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38245871

RESUMO

Human papillomaviruses (HPVs) are commensal viruses with pathogenic potential. Their life cycle requires the proliferation and differentiation of keratinocytes (KCs) to form pluristratified epithelia. Based on the original organotypic epithelial raft cultures protocol, we provide an updated workflow to optimally generate pluristratified human epithelia supporting the complete HPV replicative life cycle, here called 3D full-thickness epithelial cultures (3Deps). We describe steps for HPV genome preparation, KC transfection, and dermal equivalent preparation. We then detail procedures for 3Deps culture, harvesting, and analysis.


Assuntos
Infecções por Papillomavirus , Vírus , Humanos , Papillomavirus Humano , Queratinócitos , Epitélio
4.
Laryngoscope ; 134(5): 2322-2330, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38084790

RESUMO

OBJECTIVE: Mouse papillomavirus MmuPV1 causes both primary and secondary infections of the larynx in immunocompromised mice. Understanding lateral and vertical transmission of papillomavirus to the larynx would benefit patients with recurrent respiratory papillomatosis (RRP). To test the hypothesis that the larynx is uniquely vulnerable to papillomavirus infection, and to further develop a mouse model of RRP, we assessed whether immunocompetent mice were vulnerable to secondary or vertical laryngeal infection with MmuPV1. METHODS: Larynges were collected from 405 immunocompetent adult mice that were infected with MmuPV1 in the oropharynx, oral cavity, or anus, and 31 mouse pups born to immunocompetent females infected in the cervicovaginal tract. Larynges were analyzed via polymerase chain reaction (PCR) of lavage fluid or whole tissues for viral DNA, histopathology, and/or in situ hybridization for MmuPV1 transcripts. RESULTS: Despite some positive laryngeal lavage PCR screens, all laryngeal tissue PCR and histopathology results were negative for MmuPV1 DNA, transcripts, and disease. There was no evidence for lateral spread of MmuPV1 to the larynges of immunocompetent mice that were infected in the oral cavity, oropharynx, or anus. Pups born to infected mothers were negative for laryngeal MmuPV1 infection from birth through weaning age. CONCLUSION: Secondary and vertical laryngeal MmuPV1 infections were not found in immunocompetent mice. Further work is necessary to explore immunologic control of laryngeal papillomavirus infection in a mouse model and to improve preclinical models of RRP. LEVEL OF EVIDENCE: NA Laryngoscope, 134:2322-2330, 2024.


Assuntos
Infecções por Papillomavirus , Infecções Respiratórias , Humanos , Feminino , Camundongos , Animais , Modelos Animais de Doenças , Boca/patologia , Papillomaviridae/genética
5.
Emerg Med Australas ; 36(3): 371-377, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38114890

RESUMO

INTRODUCTION: Hypothermia is a well-recognised finding in trauma patients, which can occur even in warmer climates. It is an independent predictor of increased morbidity and mortality. It is associated with pre-hospital intubation, although the reasons for this are likely to be multifactorial. Core temperature drop after induction of anaesthesia is a well-known phenomenon in the context of elective surgery, and the mechanisms of this are well established. METHODS: We conducted a prospective observational study to examine the behaviour of core temperature in patients undergoing pre-hospital anaesthesia for traumatic injuries. RESULTS: Between 2017 and 2021 data were collected on 48 patients. The data from 40 of these were included in the final analysis. DISCUSSION: Our data do not show a decrease in the core temperatures of patients who receive pre-hospital anaesthesia, unlike patients who are anaesthetised without pre-warming, in operating theatres. The lack of a change could relate to patient, anaesthetic or environmental factors.


Assuntos
Ferimentos e Lesões , Humanos , Estudos Prospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Temperatura Corporal/fisiologia , Serviços Médicos de Emergência/métodos , Hipotermia/etiologia , Idoso , Anestesia/métodos
6.
Viruses ; 15(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38140561

RESUMO

A growing body of literature suggests that the expression of cytokeratin 17 (K17) correlates with inferior clinical outcomes across various cancer types. In this scoping review, we aimed to review and map the available clinical evidence of the prognostic and predictive value of K17 in human cancers. PubMed, Web of Science, Embase (via Scopus), Cochrane Central Register of Controlled Trials, and Google Scholar were searched for studies of K17 expression in human cancers. Eligible studies were peer-reviewed, published in English, presented original data, and directly evaluated the association between K17 and clinical outcomes in human cancers. Of the 1705 studies identified in our search, 58 studies met criteria for inclusion. Studies assessed the prognostic significance (n = 54), predictive significance (n = 2), or both the prognostic and predictive significance (n = 2). Altogether, 11 studies (19.0%) investigated the clinical relevance of K17 in cancers with a known etiologic association to HPV; of those, 8 (13.8%) were focused on head and neck squamous cell carcinoma (HNSCC), and 3 (5.1%) were focused on cervical squamous cell carcinoma (SCC). To date, HNSCC, as well as triple-negative breast cancer (TNBC) and pancreatic cancer, were the most frequently studied cancer types. K17 had prognostic significance in 16/17 investigated cancer types and 43/56 studies. Our analysis suggests that K17 is a negative prognostic factor in the majority of studied cancer types, including HPV-associated types such as HNSCC and cervical cancer (13/17), and a positive prognostic factor in 2/17 studied cancer types (urothelial carcinoma of the upper urinary tract and breast cancer). In three out of four predictive studies, K17 was a negative predictive factor for chemotherapy and immune checkpoint blockade therapy response.


Assuntos
Carcinoma de Células Escamosas , Carcinoma de Células de Transição , Neoplasias de Cabeça e Pescoço , Queratina-17 , Infecções por Papillomavirus , Neoplasias da Bexiga Urinária , Neoplasias do Colo do Útero , Feminino , Humanos , Biomarcadores Tumorais/metabolismo , Queratina-17/análise , Queratina-17/metabolismo , Infecções por Papillomavirus/complicações , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias do Colo do Útero/patologia
7.
Cancers (Basel) ; 15(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37835599

RESUMO

Low response rates in immune check-point blockade (ICB)-treated head and neck squamous cell carcinoma (HNSCC) drive a critical need for robust, clinically validated predictive biomarkers. Our group previously showed that stress keratin 17 (CK17) suppresses macrophage-mediated CXCL9/CXCL10 chemokine signaling involved in attracting activated CD8+ T cells into tumors, correlating with decreased response rate to pembrolizumab-based therapy in a pilot cohort of ICB-treated HNSCC (n = 26). Here, we performed an expanded analysis of the predictive value of CK17 in ICB-treated HNSCC according to the REMARK criteria and investigated the gene expression profiles associated with high CK17 expression. Pretreatment samples from pembrolizumab-treated HNSCC patients were stained via immunohistochemistry using a CK17 monoclonal antibody (n = 48) and subjected to spatial transcriptomic profiling (n = 8). Our findings were validated in an independent retrospective cohort (n = 22). CK17 RNA expression in pembrolizumab-treated patients with various cancer types was investigated for predictive significance. Of the 48 patients (60% male, median age of 61.5 years), 21 (44%) were CK17 high, and 27 (56%) were CK17 low. A total of 17 patients (35%, 77% CK17 low) had disease control, while 31 patients (65%, 45% CK17 low) had progressive disease. High CK17 expression was associated with a lack of disease control (p = 0.037), shorter time to treatment failure (p = 0.025), and progression-free survival (PFS, p = 0.004), but not overall survival (OS, p = 0.06). A high CK17 expression was associated with lack of disease control in an independent validation cohort (p = 0.011). PD-L1 expression did not correlate with CK17 expression or clinical outcome. CK17 RNA expression was predictive of PFS and OS in 552 pembrolizumab-treated cancer patients. Our findings indicate that high CK17 expression may predict resistance to ICB in HNSCC patients and beyond.

8.
mBio ; : e0245823, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37905801

RESUMO

The E6 protein encoded by the murine papillomavirus (MmuPV1) is essential for MmuPV1-induced skin disease. Our previous work has identified a number of cellular interacting partners of MmuPV1 E6 and E7 through affinity purification/mass spectrometry analysis. These studies revealed that MmuPV1 E6 potently inhibits keratinocyte differentiation through multiple molecular mechanisms including inhibition of NOTCH and TGF-ß signaling. Here, we report that MmuPV1 E6 has additional important oncogenic activities when expressed in its natural host cells, mouse keratinocytes, including increasing proliferation, overcoming density-mediated growth arrest, and proliferation under conditions of limited supply of growth factors. Unbiased proteomic/transcriptomic analyses of mouse keratinocytes expressing MmuPV1 E6 substantiated its effect on these cellular processes and divulged that some of these effects may be mediated in part through it upregulating E2F activity. Our analyses also revealed that MmuPV1 E6 may alter other cancer hallmarks including evasion of growth suppressors, inhibition of immune response, resistance to cell death, and alterations in DNA damage response. Collectively, our results suggest that MmuPV1 E6 is a major driver of multiple hallmarks of cancer in MmuPV1's natural host cells, mouse keratinocytes.IMPORTANCEThe Mus musculus papillomavirus 1 (MmuPV1) E6 and E7 proteins are required for MmuPV1-induced disease. Our understanding of the activities of MmuPV1 E6 has been based on affinity purification/mass spectrometry studies where cellular interacting partners of MmuPV1 E6 were identified, and these studies revealed that MmuPV1 E6 can inhibit keratinocyte differentiation through multiple mechanisms. We report that MmuPV1 E6 encodes additional activities including the induction of proliferation, resistance to density-mediated growth arrest, and decreased dependence on exogenous growth factors. Proteomic and transcriptomic analyses provided evidence that MmuPV1 E6 increases the expression and steady state levels of a number of cellular proteins that promote cellular proliferation and other hallmarks of cancer. These results indicate that MmuPV1 E6 is a major driver of MmuPV1-induced pathogenesis.

9.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37873389

RESUMO

Integrated human papillomavirus (HPV-16) associated head and neck squamous cell carcinoma (HNSCC) tumors have worse survival outcomes compared to episomal HPV-16 HNSCC tumors. Therefore, there is a need to differentiate treatment for HPV-16 integrated HNSCC from other viral forms. We analyzed TCGA data and found that HPV+ HNSCC expressed higher transcript levels of the bromodomain and extra terminal domain (BET) family of transcriptional coregulators. However, the mechanism of BET protein-mediated transcription of viral-cellular genes in the integrated viral-HNSCC genomes needs to be better understood. We show that BET inhibition downregulates E6 significantly independent of the viral transcription factor, E2, and there was overall heterogeneity in the downregulation of viral transcription in response to the effects of BET inhibition across HPV-associated cell lines. Chemical BET inhibition was phenocopied with the knockdown of BRD4 and mirrored downregulation of viral E6 and E7 expression. Strikingly, there was heterogeneity in the reactivation of p53 levels despite E6 downregulation, while E7 downregulation did not alter Rb levels significantly. We identified that BET inhibition directly downregulated c-Myc and E2F expression and induced CDKN1A expression. Overall, our studies show that BET inhibition provokes a G1-cell cycle arrest with apoptotic activity and suggests that BET inhibition regulates both viral and cellular gene expression in HPV-associated HNSCC.

10.
Viruses ; 15(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37766356

RESUMO

Approximately 40% of vulvar squamous cell carcinoma (vSCC) cases are etiologically associated with high-risk human papillomaviruses (HPVs) of the alpha genera (α-HPV) that cause other anogenital cancers; however, the etiology of α-HPV-negative vSCC is poorly understood. HPVs of the beta genera (ß-HPV) are risk factors for cutaneous squamous cell carcinoma (cSCC) and may be related to carcinomas originating in other cutaneous sites such as the vulva. In this study, we investigate the presence of ß-HPVs, with an emphasis on p16-negative squamous lesions adjacent to vSCC. We subjected 28 vulvar squamous intraepithelial lesions adjacent to vSCC for comprehensive HPV genotyping, p16 and p53 immunohistochemistry, and consensus morphology review. Selected cases were subjected to qPCR and RNA in situ hybridization. Clinical data were obtained from medical records. ß-HPV DNA was detected in eight of ten p16-negative lesions and three of fourteen p16-positive high-grade squamous intraepithelial lesions. The HPV DNA loads in vulvar squamous intraepithelial lesions ranged between less than 1 HPV DNA copy per cell to more than 100 HPV DNA copies per cell. This is, to the best of our knowledge, the first report of the association of p16-negative vulvar intraepithelial squamous lesions with detection of ß-HPVs. These findings expand possible etiologic mechanisms that may contribute to p16-negative lesions of the vulva.


Assuntos
Betapapillomavirus , Carcinoma in Situ , Carcinoma de Células Escamosas , Infecções por Papillomavirus , Neoplasias Cutâneas , Lesões Intraepiteliais Escamosas , Neoplasias Vulvares , Feminino , Humanos , Biomarcadores Tumorais/análise , Inibidor p16 de Quinase Dependente de Ciclina/análise , Neoplasias Vulvares/etiologia , Neoplasias Vulvares/patologia , Papillomavirus Humano , Lesões Intraepiteliais Escamosas/complicações , Papillomaviridae/genética
11.
Emerg Med Australas ; 35(6): 998-1004, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37461384

RESUMO

OBJECTIVE: Considerations in traumatic brain injury (TBI) management include time to critical interventions and neurosurgical care, which can be influenced by the geographical location of injury. In Australia, these distances can be vast with varying degrees of first-responder experience. The present study aimed to evaluate the association that distance and/or time to a major trauma centre (MTC) had on patient outcomes with moderate to severe TBI. METHODS: A retrospective cohort study was conducted using data from the Royal Adelaide Hospital's (RAH) Trauma Registry over a 3-year period (1 January 2018 to 31 December 2020). All patients with a moderate to severe TBI (Glasgow Coma Scale [GCS] ≤13 and abbreviated injury score head of ≥2) were included. The association of distance and time to the RAH and patient outcomes were compared by calculating the odds ratio utilising a logistic regression model. RESULTS: A total of 378 patients were identified; of these, 226 met inclusion criteria and comprised our study cohort. Most patients were male (79%), injured in a major city (55%), with median age of 38 years old and median injury severity score (ISS) of 25. After controlling for age, ISS, ED GCS on arrival and pre-MTC intubation, increasing distance or time from injury site to the RAH was not shown to be associated with mortality or discharge destination in any of the models investigated. CONCLUSION: Our analysis revealed that increasing distance or time from injury site to a MTC for patients with moderate to severe TBI was not significantly associated with adverse patient outcomes.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Masculino , Adulto , Feminino , Centros de Traumatologia , Lesões Encefálicas/complicações , Austrália do Sul , Estudos Retrospectivos , Lesões Encefálicas Traumáticas/epidemiologia , Lesões Encefálicas Traumáticas/terapia , Escala de Coma de Glasgow
12.
Laryngoscope ; 133(12): 3256-3268, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37227124

RESUMO

OBJECTIVE: Laryngeal human papillomavirus (HPV) infection causes recurrent respiratory papillomatosis (RRP) and accounts for up to 25% of laryngeal cancers. Lack of satisfactory preclinical models is one reason that treatments for these diseases are limited. We sought to assess the literature describing preclinical models of laryngeal papillomavirus infection. DATA SOURCES: PubMed, Web of Science, and Scopus were searched from the inception of database through October 2022. REVIEW METHODS: Studies searched were screened by two investigators. Eligible studies were peer-reviewed, published in English, presented original data, and described attempted models of laryngeal papillomavirus infection. Data examined included type of papillomavirus, infection model, and results including success rate, disease phenotype, and viral retention. RESULTS: After screening 440 citations and 138 full-text studies, 77 studies published between 1923 and 2022 were included. Models used low-risk HPV or RRP (n = 51 studies), high-risk HPV or laryngeal cancer (n = 16), both low- and high-risk HPV (n = 1), and animal papillomaviruses (n = 9). For RRP, 2D and 3D cell culture models and xenografts retained disease phenotypes and HPV DNA in the short term. Two laryngeal cancer cell lines were consistently HPV-positive in multiple studies. Animal laryngeal infections with animal papillomaviruses resulted in disease and long-term retention of viral DNA. CONCLUSIONS: Laryngeal papillomavirus infection models have been researched for 100 years and primarily involve low-risk HPV. Most models lose viral DNA after a short duration. Future work is needed to model persistent and recurrent diseases, consistent with RRP and HPV-positive laryngeal cancer. LEVEL OF EVIDENCE: NA Laryngoscope, 133:3256-3268, 2023.


Assuntos
Neoplasias Laríngeas , Laringe , Infecções por Papillomavirus , Infecções Respiratórias , Humanos , DNA Viral , Papillomaviridae/genética , Papillomavirus Humano 11
13.
Nat Commun ; 14(1): 1975, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031202

RESUMO

Persistent HPV16 infection is a major cause of the global cancer burden. The viral life cycle is dependent on the differentiation program of stratified squamous epithelium, but the landscape of keratinocyte subpopulations which support distinct phases of the viral life cycle has yet to be elucidated. Here, single cell RNA sequencing of HPV16 infected compared to uninfected organoids identifies twelve distinct keratinocyte populations, with a subset mapped to reconstruct their respective 3D geography in stratified squamous epithelium. Instead of conventional terminally differentiated cells, an HPV-reprogrammed keratinocyte subpopulation (HIDDEN cells) forms the surface compartment and requires overexpression of the ELF3/ESE-1 transcription factor. HIDDEN cells are detected throughout stages of human carcinogenesis including primary human cervical intraepithelial neoplasias and HPV positive head and neck cancers, and a possible role in promoting viral carcinogenesis is supported by TCGA analyses. Single cell transcriptome information on HPV-infected versus uninfected epithelium will enable broader studies of the role of individual keratinocyte subpopulations in tumor virus infection and cancer evolution.


Assuntos
Carcinoma de Células Escamosas , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Feminino , Humanos , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Transcriptoma , Epitélio/metabolismo , Queratinócitos/metabolismo , Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Proteínas Oncogênicas Virais/genética
14.
PLoS Pathog ; 19(4): e1011215, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37036883

RESUMO

Human papillomaviruses (HPVs) contribute to approximately 5% of all human cancers. Species-specific barriers limit the ability to study HPV pathogenesis in animal models. Murine papillomavirus (MmuPV1) provides a powerful tool to study the roles of papillomavirus genes in pathogenesis arising from a natural infection. We previously identified Protein Tyrosine Phosphatase Non-Receptor Type 14 (PTPN14), a tumor suppressor targeted by HPV E7 proteins, as a putative cellular target of MmuPV1 E7. Here, we confirmed the MmuPV1 E7-PTPN14 interaction. Based on the published structure of the HPV18 E7/PTPN14 complex, we generated a MmuPV1 E7 mutant, E7K81S, that was defective for binding PTPN14. Wild-type (WT) and E7K81S mutant viral genomes replicated as extrachromosomal circular DNAs to comparable levels in mouse keratinocytes. E7K81S mutant virus (E7K81S MmuPV1) was generated and used to infect FoxN/Nude mice. E7K81S MmuPV1 caused neoplastic lesions at a frequency similar to that of WT MmuPV1, but the lesions arose later and were smaller than WT-induced lesions. The E7K81S MmuPV1-induced lesions also had a trend towards a less severe grade of neoplastic disease. In the lesions, E7K81S MmuPV1 supported the late (productive) stage of the viral life cycle and promoted E2F activity and cellular DNA synthesis in suprabasal epithelial cells to similar degrees as WT MmuPV1. There was a similar frequency of lateral spread of infections among mice infected with E7K81S or WT MmuPV1. Compared to WT MmuPV1-induced lesions, E7K81S MmuPV1-induced lesions had a significant expansion of cells expressing differentiation markers, Keratin 10 and Involucrin. We conclude that an intact PTPN14 binding site is necessary for MmuPV1 E7's ability to contribute to papillomavirus-induced pathogenesis and this correlates with MmuPV1 E7 causing a delay in epithelial differentiation, which is a hallmark of papillomavirus-induced neoplasia.


Assuntos
Neoplasias , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Dermatopatias , Animais , Humanos , Camundongos , Diferenciação Celular , Camundongos Nus , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/genética , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/genética , Ligação Proteica , Proteínas Tirosina Fosfatases não Receptoras/genética
15.
Cancers (Basel) ; 15(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36980731

RESUMO

Latent infection of Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cell cancers, including 10% of gastric carcinomas. We previously reported that hypoxia inducible factor-1α (HIF-1α) induces EBV's latent-to-lytic switch and identified several HIF-1α-stabilizing drugs that induce this viral reactivation. Here, we tested three classes of these drugs for preferential killing of the EBV-positive gastric cancer AGS-Akata cell line compared to its matched EBV-negative AGS control. We observed preferential killing with iron chelators [Deferoxamine (DFO); Deferasirox (DFX)] and a prolyl hydroxylase inhibitor (BAY 85-3934 (Molidustat)), but not with a neddylation inhibitor [MLN4924 (Pevonedistat)]. DFO and DFX also induced preferential killing of the EBV-positive gastric cancer AGS-BDneo and SNU-719 cell lines. Preferential killing was enhanced when low-dose DFX (10 µM) was combined with the antiviral prodrug ganciclovir. DFO and DFX induced lytic EBV reactivation in approximately 10% of SNU-719 and 20-30% of AGS-Akata and AGS-BDneo cells. However, neither DFO nor DFX significantly induced synthesis of lytic EBV proteins in xenografts grown in NSG mice from AGS-Akata cells above the level observed in control-treated mice. Therefore, these FDA-approved iron chelators are less effective than gemcitabine at promoting EBV reactivation in vivo despite their high specificity and efficiency in vitro.

16.
Proc Natl Acad Sci U S A ; 120(14): e2216700120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36989302

RESUMO

Chromosome segregation during mitosis is highly regulated to ensure production of genetically identical progeny. Recurrent mitotic errors cause chromosomal instability (CIN), a hallmark of tumors. The E6 and E7 oncoproteins of high-risk human papillomavirus (HPV), which causes cervical, anal, and head and neck cancers (HNC), cause mitotic defects consistent with CIN in models of anogenital cancers, but this has not been studied in the context of HNC. Here, we show that HPV16 induces a specific type of CIN in patient HNC tumors, patient-derived xenografts, and cell lines, which is due to defects in chromosome congression. These defects are specifically induced by the HPV16 oncogene E6 rather than E7. We show that HPV16 E6 expression causes degradation of the mitotic kinesin CENP-E, whose depletion produces chromosomes that are chronically misaligned near spindle poles (polar chromosomes) and fail to congress. Though the canonical oncogenic role of E6 is the degradation of the tumor suppressor p53, CENP-E degradation and polar chromosomes occur independently of p53. Instead, E6 directs CENP-E degradation in a proteasome-dependent manner via the E6-associated ubiquitin protein ligase E6AP/UBE3A. This study reveals a mechanism by which HPV induces CIN, which may impact HPV-mediated tumor initiation, progression, and therapeutic response.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Instabilidade Cromossômica , Cromossomos/metabolismo , Papillomavirus Humano 16/genética , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(12): e2214225120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36917668

RESUMO

A murine papillomavirus, MmuPV1, infects both cutaneous and mucosal epithelia of laboratory mice and can be used to model high-risk human papillomavirus (HPV) infection and HPV-associated disease. We have shown that estrogen exacerbates papillomavirus-induced cervical disease in HPV-transgenic mice. We have also previously identified stress keratin 17 (K17) as a host factor that supports MmuPV1-induced cutaneous disease. Here, we sought to test the role of estrogen and K17 in MmuPV1 infection and associated disease in the female reproductive tract. We experimentally infected wild-type and K17 knockout (K17KO) mice with MmuPV1 in the female reproductive tract in the presence or absence of exogenous estrogen for 6 mon. We observed that a significantly higher percentage of K17KO mice cleared the virus as opposed to wild-type mice. In estrogen-treated wild-type mice, the MmuPV1 viral copy number was significantly higher compared to untreated mice by as early as 2 wk postinfection, suggesting that estrogen may help facilitate MmuPV1 infection and/or establishment. Consistent with this, viral clearance was not observed in either wild-type or K17KO mice when treated with estrogen. Furthermore, neoplastic disease progression and cervical carcinogenesis were supported by the presence of K17 and exacerbated by estrogen treatment. Subsequent analyses indicated that estrogen treatment induces a systemic immunosuppressive state in MmuPV1-infected animals and that both estrogen and K17 modulate the local intratumoral immune microenvironment within MmuPV1-induced neoplastic lesions. Collectively, these findings suggest that estrogen and K17 act at multiple stages of papillomavirus-induced disease at least in part via immunomodulatory mechanisms.


Assuntos
Infecções por Papillomavirus , Camundongos , Feminino , Humanos , Animais , Infecções por Papillomavirus/genética , Queratina-17 , Camundongos Transgênicos , Imunidade , Papillomaviridae/genética , Estrogênios
18.
PLoS Pathog ; 18(10): e1010868, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36190982

RESUMO

Differentiated epithelial cells are an important source of infectious EBV virions in human saliva, and latent Epstein-Barr virus (EBV) infection is strongly associated with the epithelial cell tumor, nasopharyngeal carcinoma (NPC). However, it has been difficult to model how EBV contributes to NPC, since EBV has not been shown to enhance proliferation of epithelial cells in monolayer culture in vitro and is not stably maintained in epithelial cells without antibiotic selection. In addition, although there are two major types of EBV (type 1 (T1) and type 2 (T2)), it is currently unknown whether T1 and T2 EBV behave differently in epithelial cells. Here we inserted a G418 resistance gene into the T2 EBV strain, AG876, allowing us to compare the phenotypes of T1 Akata virus versus T2 AG876 virus in a telomerase-immortalized normal oral keratinocyte cell line (NOKs) using a variety of different methods, including RNA-seq analysis, proliferation assays, immunoblot analyses, and air-liquid interface culture. We show that both T1 Akata virus infection and T2 AG876 virus infection of NOKs induce cellular proliferation, and inhibit spontaneous differentiation, in comparison to the uninfected cells when cells are grown without supplemental growth factors in monolayer culture. T1 EBV and T2 EBV also have a similar ability to induce epithelial-to-mesenchymal (EMT) transition and activate canonical and non-canonical NF-κB signaling in infected NOKs. In contrast to our recent results in EBV-infected lymphoblastoid cells (in which T2 EBV infection is much more lytic than T1 EBV infection), we find that NOKs infected with T1 and T2 EBV respond similarly to lytic inducing agents such as TPA treatment or differentiation. These results suggest that T1 and T2 EBV have similar phenotypes in infected epithelial cells, with both EBV types enhancing cellular proliferation and inhibiting differentiation when growth factors are limiting.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Telomerase , Antibacterianos/metabolismo , Proliferação de Células , Herpesvirus Humano 4/metabolismo , Humanos , Queratinócitos , NF-kappa B/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Telomerase/genética , Ativação Viral
19.
Viruses ; 14(10)2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36298698

RESUMO

Human papillomaviruses (HPVs) cause a substantial amount of human disease from benign disease such as warts to malignant cancers including cervical carcinoma, head and neck cancer, and non-melanoma skin cancer. Our ability to model HPV-induced malignant disease has been impeded by species specific barriers and pre-clinical animal models have been challenging to develop. The recent discovery of a murine papillomavirus, MmuPV1, that infects laboratory mice and causes the same range of malignancies caused by HPVs provides the papillomavirus field the opportunity to test mechanistic hypotheses in a genetically manipulatable laboratory animal species in the context of natural infections. The E6 and E7 proteins encoded by high-risk HPVs, which are the HPV genotypes associated with human cancers, are multifunctional proteins that contribute to HPV-induced cancers in multiple ways. In this review, we describe the known activities of the MmuPV1-encoded E6 and E7 proteins and how those activities relate to the activities of HPV E6 and E7 oncoproteins encoded by mucosal and cutaneous high-risk HPV genotypes.


Assuntos
Alphapapillomavirus , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Camundongos , Animais , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Alphapapillomavirus/genética , Papillomaviridae/genética , Papillomaviridae/metabolismo
20.
Viruses ; 14(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36298759

RESUMO

Merkel cell polyomavirus (MCPyV) is the only human polyomavirus currently known to cause human cancer. MCPyV is believed to be an etiological factor in at least 80% of cases of the rare but aggressive skin malignancy Merkel cell carcinoma (MCC). In these MCPyV+ MCC tumors, clonal integration of the viral genome results in the continued expression of two viral proteins: the viral small T antigen (ST) and a truncated form of the viral large T antigen. The oncogenic potential of MCPyV and the functional properties of the viral T antigens that contribute to neoplasia are becoming increasingly well-characterized with the recent development of model systems that recapitulate the biology of MCPyV+ MCC. In this review, we summarize our understanding of MCPyV and its role in MCC, followed by the current state of both in vitro and in vivo model systems used to study MCPyV and its contribution to carcinogenesis. We also highlight the remaining challenges within the field and the major considerations related to the ongoing development of in vitro and in vivo models of MCPyV+ MCC.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Humanos , Poliomavírus das Células de Merkel/genética , Infecções Tumorais por Vírus/metabolismo , Antígenos Virais de Tumores/genética , Carcinogênese/genética , Proteínas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...