Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbes ; 5: xtae007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544682

RESUMO

Wastewater-based epidemiology is now widely used in many countries for the routine monitoring of SARS-CoV-2 and other viruses at a community level. However, efficient sample processing technologies are still under investigation. In this study, we compared the performance of the novel Nanotrap® Microbiome Particles (NMP) concentration method to the commonly used polyethylene glycol (PEG) precipitation method for concentrating viruses from wastewater and their subsequent quantification and sequencing. For this, we first spiked wastewater with SARS-CoV-2, influenza and measles viruses and norovirus and found that the NMP method recovered 0.4%-21% of them depending on virus type, providing consistent and reproducible results. Using the NMP and PEG methods, we monitored SARS-CoV-2, influenza A and B viruses, RSV, enteroviruses and norovirus GI and GII and crAssphage in wastewater using quantitative PCR (qPCR)-based methods and next-generation sequencing. Good viral recoveries were observed for highly abundant viruses using both methods; however, PEG precipitation was more successful in the recovery of low-abundance viruses present in wastewater. Furthermore, samples processed with PEG precipitation were more successfully sequenced for SARS-CoV-2 than those processed with the NMP method. Virus recoveries were enhanced by high sample volumes when PEG precipitation was applied. Overall, our results suggest that the NMP concentration method is a rapid and easy virus concentration method for viral targets that are abundant in wastewater, whereas PEG precipitation may be more suited to the recovery and analysis of low-abundance viruses and for next generation sequencing.

2.
Epidemiol Infect ; 152: e31, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329110

RESUMO

Wastewater-based epidemiology (WBE) has proven to be a powerful tool for the population-level monitoring of pathogens, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For assessment, several wastewater sampling regimes and methods of viral concentration have been investigated, mainly targeting SARS-CoV-2. However, the use of passive samplers in near-source environments for a range of viruses in wastewater is still under-investigated. To address this, near-source passive samples were taken at four locations targeting student hall of residence. These were chosen as an exemplar due to their high population density and perceived risk of disease transmission. Viruses investigated were SARS-CoV-2 and its variants of concern (VOCs), influenza viruses, and enteroviruses. Sampling was conducted either in the morning, where passive samplers were in place overnight (17 h) and during the day, with exposure of 7 h. We demonstrated the usefulness of near-source passive sampling for the detection of VOCs using quantitative polymerase chain reaction (qPCR) and next-generation sequencing (NGS). Furthermore, several outbreaks of influenza A and sporadic outbreaks of enteroviruses (some associated with enterovirus D68 and coxsackieviruses) were identified among the resident student population, providing evidence of the usefulness of near-source, in-sewer sampling for monitoring the health of high population density communities.


Assuntos
Infecções por Enterovirus , Águas Residuárias , Humanos , Universidades , Surtos de Doenças , Antígenos Virais , SARS-CoV-2 , RNA Viral
3.
Environ Sci Pollut Res Int ; 30(59): 123785-123795, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37989946

RESUMO

Wastewater-based epidemiology (WBE) has been commonly used for monitoring SARS-CoV-2 outbreaks. As sampling times and methods (i.e. grab vs composite) may vary, diurnal changes of viral concentrations in sewage should be better understood. In this study, we collected untreated wastewater samples hourly for 4 days at two wastewater treatment plants in Wales to establish diurnal patterns in virus concentrations and the physico-chemical properties of the water. Simultaneously, we also trialled three absorbent materials as passive samples as a simple and cost-efficient alternative for the collection of composite samples. Ninety-six percent of all liquid samples (n = 74) and 88% of the passive samplers (n = 59) were positive for SARS-CoV-2, whereas 87% and 97% of the liquid and passive samples were positive for the faecal indicator virus crAssphage, respectively. We found no significant daily variations in the concentration of the target viruses, ammonium and orthophosphate, and the pH and electrical conductivity levels were also stable. Weak positive correlations were found between some physico-chemical properties and viral concentrations. More variation was observed in samples taken from the influent stream as opposed to those taken from the influent tank. Of the absorbent materials trialled as passive samples, we found that tampons provided higher viral recoveries than electronegative filter paper and cotton gauze swabs. For all materials tested, viral recovery was dependent on the virus type. Our results indicate that grab samples may provide representative alternatives to 24-h composite samples if taken from the influent tank, hence reducing the costs of sampling for WBE programmes. Tampons are also viable alternatives for cost-efficient sampling; however, viral recovery should be optimised prior to use.


Assuntos
Vírus , Águas Residuárias , SARS-CoV-2 , Esgotos , Vigilância Epidemiológica Baseada em Águas Residuárias
4.
Microbiol Spectr ; 10(4): e0110222, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35950856

RESUMO

Wastewater-based epidemiology (WBE) has been widely used to track levels of SARS-CoV-2 infection in the community during the COVID-19 pandemic. Due to the rapid expansion of WBE, many methods have been used and developed for virus concentration and detection in wastewater. However, very little information is available on the relative performance of these approaches. In this study, we compared the performance of five commonly used wastewater concentration methods for the detection and quantification of pathogenic viruses (SARS-CoV-2, norovirus, rotavirus, influenza, and measles viruses), fecal indicator viruses (crAssphage, adenovirus, pepper mild mottle virus), and process control viruses (murine norovirus and bacteriophage Phi6) in laboratory spiking experiments. The methods evaluated included those based on either ultrafiltration (Amicon centrifugation units and InnovaPrep device) or precipitation (using polyethylene glycol [PEG], beef extract-enhanced PEG, and ammonium sulfate). The two best methods were further tested on 115 unspiked wastewater samples. We found that the volume and composition of the wastewater and the characteristics of the target viruses greatly affected virus recovery, regardless of the method used for concentration. All tested methods are suitable for routine virus concentration; however, the Amicon ultrafiltration method and the beef extract-enhanced PEG precipitation methods yielded the best recoveries. We recommend the use of ultrafiltration-based concentration for low sample volumes with high virus titers and ammonium levels and the use of precipitation-based concentration for rare pathogen detection in high-volume samples. IMPORTANCE As wastewater-based epidemiology is utilized for the surveillance of COVID-19 at the community level in many countries, it is crucial to develop and validate reliable methods for virus detection in sewage. The most important step in viral detection is the efficient concentration of the virus particles and/or their genome for subsequent analysis. In this study, we compared five different methods for the detection and quantification of different viruses in wastewater. We found that dead-end ultrafiltration and beef extract-enhanced polyethylene glycol precipitation were the most reliable approaches. We also discovered that sample volume and physico-chemical properties have a great effect on virus recovery. Hence, wastewater process methods and start volumes should be carefully selected in ongoing and future wastewater-based national surveillance programs for COVID-19 and beyond.


Assuntos
COVID-19 , Vírus , Animais , Bovinos , Humanos , Camundongos , Pandemias , Polietilenoglicóis , SARS-CoV-2 , Vírus/genética , Águas Residuárias
5.
Sci Total Environ ; 838(Pt 4): 156580, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35690190

RESUMO

Wastewater-based epidemiology (WBE) has proven to be a useful surveillance tool during the ongoing SARS-CoV-2 pandemic, and has driven research into evaluating the most reliable and cost-effective techniques for obtaining a representative sample of wastewater. When liquid samples cannot be taken efficiently, passive sampling approaches have been used, however, insufficient data exists on their usefulness for multi-virus capture and recovery. In this study, we compared the virus-binding capacity of two passive samplers (cotton-based tampons and ion exchange filter papers) in two different water types (deionised water and wastewater). Here we focused on the capture of wastewater-associated viruses including Influenza A and B (Flu-A & B), SARS-CoV-2, human adenovirus (AdV), norovirus GII (NoVGII), measles virus (MeV), pepper mild mottle virus (PMMoV), the faecal marker crAssphage and the process control virus Pseudomonas virus phi6. After deployment, we evaluated four different methods to recover viruses from the passive samplers namely, (i) phosphate buffered saline (PBS) elution followed by polyethylene glycol (PEG) precipitation, (ii) beef extract (BE) elution followed by PEG precipitation, (iii) no-elution into PEG precipitation, and (iv) direct extraction. We found that the tampon-based passive samplers had higher viral recoveries in comparison to the filter paper. Overall, the preferred viral recovery method from the tampon passive samplers was the no-elution/PEG precipitation method. Furthermore, we evidenced that non-enveloped viruses had higher percent recoveries from the passive samplers than enveloped viruses. This is the first study of its kind to assess passive sampler and viral recovery methods amongst a plethora of viruses commonly found in wastewater or used as a viral surrogate in wastewater studies.


Assuntos
COVID-19 , Vírus , Animais , Bovinos , Humanos , SARS-CoV-2 , Águas Residuárias , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...