Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 20(10): e3001786, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36201522

RESUMO

A cell's size affects the likelihood that it will die. But how is cell size controlled in this context and how does cell size impact commitment to the cell death fate? We present evidence that the caspase CED-3 interacts with the RhoGEF ECT-2 in Caenorhabditis elegans neuroblasts that generate "unwanted" cells. We propose that this interaction promotes polar actomyosin contractility, which leads to unequal neuroblast division and the generation of a daughter cell that is below the critical "lethal" size threshold. Furthermore, we find that hyperactivation of ECT-2 RhoGEF reduces the sizes of unwanted cells. Importantly, this suppresses the "cell death abnormal" phenotype caused by the partial loss of ced-3 caspase and therefore increases the likelihood that unwanted cells die. A putative null mutation of ced-3 caspase, however, is not suppressed, which indicates that cell size affects CED-3 caspase activation and/or activity. Therefore, we have uncovered novel sequential and reciprocal interactions between the apoptosis pathway and cell size that impact a cell's commitment to the cell death fate.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Actomiosina/metabolismo , Animais , Apoptose/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caspases/genética , Caspases/metabolismo , Tamanho Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
2.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-36606081

RESUMO

Visualization of genomic loci with open chromatin state has been reported in mammalian tissue culture cells using a CRISPR/Cas9-based system that utilizes an EGFP-tagged endonuclease-deficient Cas9 protein (dCas9::EGFP) (Chen et al. 2013). Here, we adapted this approach for use in Caenorhabditis elegans . We generated a C. elegans strain that expresses the dCas9 protein fused to two nuclear-localized EGFP molecules (dCas9::NLS::2xEGFP::NLS) in an inducible manner. Using this strain, we report the visualization in live C. elegans embryos of two endogenous repetitive loci, rrn-4 and rrn-1 , from which 5S and 18S ribosomal RNAs are constitutively generated.

3.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33784383

RESUMO

Mitochondrial dynamics plays an important role in mitochondrial quality control and the adaptation of metabolic activity in response to environmental changes. The disruption of mitochondrial dynamics has detrimental consequences for mitochondrial and cellular homeostasis and leads to the activation of the mitochondrial unfolded protein response (UPRmt), a quality control mechanism that adjusts cellular metabolism and restores homeostasis. To identify genes involved in the induction of UPRmt in response to a block in mitochondrial fusion, we performed a genome-wide RNAi screen in Caenorhabditis elegans mutants lacking the gene fzo-1, which encodes the ortholog of mammalian Mitofusin, and identified 299 suppressors and 86 enhancers. Approximately 90% of these 385 genes are conserved in humans, and one-third of the conserved genes have been implicated in human disease. Furthermore, many have roles in developmental processes, which suggests that mitochondrial function and their response to stress are defined during development and maintained throughout life. Our dataset primarily contains mitochondrial enhancers and non-mitochondrial suppressors of UPRmt, indicating that the maintenance of mitochondrial homeostasis has evolved as a critical cellular function, which, when disrupted, can be compensated for by many different cellular processes. Analysis of the subsets "non-mitochondrial enhancers" and "mitochondrial suppressors" suggests that organellar contact sites, especially between the ER and mitochondria, are of importance for mitochondrial homeostasis. In addition, we identified several genes involved in IP3 signaling that modulate UPRmt in fzo-1 mutants and found a potential link between pre-mRNA splicing and UPRmt activation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Dinâmica Mitocondrial/genética , Interferência de RNA , Resposta a Proteínas não Dobradas/genética
4.
PLoS Genet ; 16(9): e1008912, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32946434

RESUMO

The mechanism(s) through which mammalian kinase MELK promotes tumorigenesis is not understood. We find that the C. elegans orthologue of MELK, PIG-1, promotes apoptosis by partitioning an anti-apoptotic factor. The C. elegans NSM neuroblast divides to produce a larger cell that differentiates into a neuron and a smaller cell that dies. We find that in this context, PIG-1 MELK is required for partitioning of CES-1 Snail, a transcriptional repressor of the pro-apoptotic gene egl-1 BH3-only. pig-1 MELK is controlled by both a ces-1 Snail- and par-4 LKB1-dependent pathway, and may act through phosphorylation and cortical enrichment of nonmuscle myosin II prior to neuroblast division. We propose that pig-1 MELK-induced local contractility of the actomyosin network plays a conserved role in the acquisition of the apoptotic fate. Our work also uncovers an auto-regulatory loop through which ces-1 Snail controls its own activity through the formation of a gradient of CES-1 Snail protein.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Actomiosina/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/fisiologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Morte Celular/fisiologia , Polaridade Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Miosina Tipo II/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição/genética
5.
PLoS One ; 13(3): e0194451, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29547664

RESUMO

P5B ATPases are present in the genomes of diverse unicellular and multicellular eukaryotes, indicating that they have an ancient origin, and that they are important for cellular fitness. Inactivation of ATP13A2, one of the four human P5B ATPases, leads to early-onset Parkinson's disease (Kufor-Rakeb Syndrome). The presence of an invariant PPALP motif within the putative substrate interaction pocket of transmembrane segment M4 suggests that all P5B ATPases might have similar transport specificity; however, the identity of the transport substrate(s) remains unknown. Nematodes of the genus Caenorhabditis possess three paralogous P5B ATPase genes, catp-5, catp-6 and catp-7, which probably originated from a single ancestral gene around the time of origin of the Caenorhabditid clade. By using CRISPR/Cas9, we have systematically investigated the expression patterns, subcellular localization and biological functions of each of the P5B ATPases of C. elegans. We find that each gene has a unique expression pattern, and that some tissues express more than one P5B. In some tissues where their expression patterns overlap, different P5Bs are targeted to different subcellular compartments (e.g., early endosomes vs. plasma membrane), whereas in other tissues they localize to the same compartment (plasma membrane). We observed lysosomal co-localization between CATP-6::GFP and LMP-1::RFP in transgenic animals; however, this was an artifact of the tagged LMP-1 protein, since anti-LMP-1 antibody staining of native protein revealed that LMP-1 and CATP-6::GFP occupy different compartments. The nematode P5Bs are at least partially redundant, since we observed synthetic sterility in catp-5(0); catp-6(0) and catp-6(0) catp-7(0) double mutants. The double mutants exhibit defects in distal tip cell migration that resemble those of ina-1 (alpha integrin ortholog) and vab-3 (Pax6 ortholog) mutants, suggesting that the nematode P5Bs are required for ina-1and/or vab-3 function. This is potentially a conserved regulatory interaction, since mammalian ATP13A2, alpha integrin and Pax6 are all required for proper dopaminergic neuron function.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Adenosina Trifosfatases/classificação , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/metabolismo , Movimento Celular/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Organelas/enzimologia , Filogenia , Homologia de Sequência de Aminoácidos
6.
Nat Commun ; 6: 10126, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26657541

RESUMO

Components of the conserved engulfment pathways promote programmed cell death in Caenorhabditis elegans (C. elegans) through an unknown mechanism. Here we report that the phagocytic receptor CED-1 mEGF10 is required for the formation of a dorsal-ventral gradient of CED-3 caspase activity within the mother of a cell programmed to die and an increase in the level of CED-3 protein within its dying daughter. Furthermore, CED-1 becomes enriched on plasma membrane regions of neighbouring cells that appose the dorsal side of the mother, which later forms the dying daughter. Therefore, we propose that components of the engulfment pathways promote programmed cell death by enhancing the polar localization of apoptotic factors in mothers of cells programmed to die and the unequal segregation of apoptotic potential into dying and surviving daughters. Our findings reveal a novel function of the engulfment pathways and provide a better understanding of how apoptosis is initiated during C. elegans development.


Assuntos
Apoptose/fisiologia , Caenorhabditis elegans/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica/fisiologia , Neurônios/citologia , Neurônios/fisiologia
7.
PLoS One ; 10(11): e0143445, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26606136

RESUMO

TRP (Transient Receptor Potential) cation channels of the TRPM subfamily have been found to be critically important for the regulation of Mg2+ homeostasis in both protostomes (e.g., the nematode, C. elegans, and the insect, D. melanogaster) and deuterostomes (e.g., humans). Although significant progress has been made toward understanding how the activities of these channels are regulated, there are still major gaps in our understanding of the potential regulatory roles of extensive, evolutionarily conserved, regions of these proteins. The C. elegans genes, gon-2, gtl-1 and gtl-2, encode paralogous TRP cation channel proteins that are similar in sequence and function to human TRPM6 and TRPM7. We isolated fourteen revertants of the missense mutant, gon-2(q338), and these mutations affect nine different residues within GON-2. Since eight of the nine affected residues are situated within regions that have high similarity to human TRPM1,3,6 and 7, these mutations identify sections of these channels that are potentially critical for channel regulation. We also isolated a single mutant allele of gon-2 during a screen for revertants of the Mg2+-hypersensitive phenotype of gtl-2(-) mutants. This allele of gon-2 converts a serine to phenylalanine within the highly conserved TRP domain, and is antimorphic against both gon-2(+) and gtl-1(+). Interestingly, others have reported that mutation of the corresponding residue in TRPM7 to glutamate results in deregulated channel activity.


Assuntos
Alelos , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Canais Iônicos/genética , Canais de Cátion TRPM/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Dosagem de Genes , Canais Iônicos/química , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , Canais de Cátion TRPM/química
8.
Elife ; 32014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25303366

RESUMO

The AP2 clathrin adaptor complex links protein cargo to the endocytic machinery but it is unclear how AP2 is activated on the plasma membrane. Here we demonstrate that the membrane-associated proteins FCHo and SGIP1 convert AP2 into an open, active conformation. We screened for Caenorhabditis elegans mutants that phenocopy the loss of AP2 subunits and found that AP2 remains inactive in fcho-1 mutants. A subsequent screen for bypass suppressors of fcho-1 nulls identified 71 compensatory mutations in all four AP2 subunits. Using a protease-sensitivity assay we show that these mutations restore the open conformation in vivo. The domain of FCHo that induces this rearrangement is not the F-BAR domain or the µ-homology domain, but rather is an uncharacterized 90 amino acid motif, found in both FCHo and SGIP proteins, that directly binds AP2. Thus, these proteins stabilize nascent endocytic pits by exposing membrane and cargo binding sites on AP2.


Assuntos
Complexo 2 de Proteínas Adaptadoras/química , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Transporte/química , Endocitose/genética , Proteínas de Membrana/química , Subunidades Proteicas/química , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Transporte Biológico , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Vesículas Revestidas por Clatrina/ultraestrutura , Invaginações Revestidas da Membrana Celular/metabolismo , Invaginações Revestidas da Membrana Celular/ultraestrutura , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Transdução de Sinais
9.
PLoS One ; 8(10): e77202, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130856

RESUMO

In previous work, we found that gain-of-function mutations that hyperactivate GEM-1 (an SLC16A transporter protein) can bypass the requirement for GON-2 (a TRPM channel protein) during the initiation of gonadogenesis in C. elegans. Consequently, we proposed that GEM-1 might function as part of a Mg(2+) uptake pathway that functions in parallel to GON-2. In this study, we report that CATP-6, a C. elegans ortholog of the P5B ATPase, ATP13A2 (PARK9), is necessary for gem-1 gain-of-function mutations to suppress the effects of gon-2 inactivation. One possible explanation for this observation is that GEM-1 serves to activate CATP-6, which then functions as a Mg(2+) transporter. However, we found that overexpression of GEM-1 can alleviate the requirement for CATP-6 activity, suggesting that CATP-6 probably acts as a non-essential upstream positive regulator of GEM-1. Our results are consistent with the notion that P5B ATPases govern intracellular levels of Mg(2+) and/or Mn(2+) by regulating the trafficking of transporters and other proteins associated with the plasma membrane.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , ATPases Translocadoras de Prótons/química , Homologia de Sequência , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Gônadas/crescimento & desenvolvimento , Magnésio/metabolismo , Dados de Sequência Molecular , Supressão Genética
10.
Methods Cell Biol ; 106: 3-22, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22118272

RESUMO

At present, the principal goal of mapping is to establish correspondence between a mutation identified via a change in phenotype and an alteration in the DNA sequence of the genome. Recent advances in molecular biology and bioinformatics have greatly facilitated this procedure, but certain standard methods, such as the three-factor cross, continue to be extremely useful for high-resolution mapping and separation of tightly linked mutations. This chapter provides both general guidelines and specific procedures for the characterization and mapping of newly isolated mutations in C. elegans. Procedures are included for dealing with mutations that cannot be propagated as homozygotes, as well as mutations that can only be scored in specialized genetic backgrounds, for example, suppressor, enhancer, and modifier mutations.


Assuntos
Caenorhabditis elegans/genética , Mapeamento Cromossômico , Genoma Helmíntico , Mutação , Animais , Ligação Genética , Genótipo , Padrões de Herança , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
11.
PLoS One ; 5(3): e9589, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20221407

RESUMO

Systemic magnesium homeostasis in mammals is primarily governed by the activities of the TRPM6 and TRPM7 cation channels, which mediate both uptake by the intestinal epithelial cells and reabsorption by the distal convoluted tubule cells in the kidney. In the nematode, C. elegans, intestinal magnesium uptake is dependent on the activities of the TRPM channel proteins, GON-2 and GTL-1. In this paper we provide evidence that another member of the TRPM protein family, GTL-2, acts within the C. elegans excretory cell to mediate the excretion of excess magnesium. Thus, the activity of GTL-2 balances the activities of the paralogous TRPM channel proteins, GON-2 and GTL-1.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Canais Iônicos/metabolismo , Magnésio/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Eletrofisiologia/métodos , Vetores Genéticos , Rim/metabolismo , Modelos Biológicos , Mutação , Potássio/química , Interferência de RNA , Oligoelementos
12.
Genetics ; 181(2): 581-91, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19087963

RESUMO

The gon-2 gene of Caenorhabditis elegans encodes a TRPM cation channel required for gonadal cell divisions. In this article, we demonstrate that the gonadogenesis defects of gon-2 loss-of-function mutants (including a null allele) can be suppressed by gain-of-function mutations in the gem-1 (gon-2 extragenic modifier) locus. gem-1 encodes a multipass transmembrane protein that is similar to SLC16 family monocarboxylate transporters. Inactivation of gem-1 enhances the gonadogenesis defects of gon-2 hypomorphic mutations, suggesting that these two genes probably act in parallel to promote gonadal cell divisions. GEM-1GFP is expressed within the gonadal precursor cells and localizes to the plasma membrane. Therefore, we propose that GEM-1 acts in parallel to the GON-2 channel to promote cation uptake within the developing gonad.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Genes de Helmintos , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/química , Cálcio/metabolismo , Mapeamento Cromossômico , Primers do DNA/genética , DNA de Helmintos/genética , Genes Supressores , Modelos Biológicos , Dados de Sequência Molecular , Transportadores de Ácidos Monocarboxílicos/química , Mutação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos
13.
Nucleic Acids Res ; 35(19): e133, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17933760

RESUMO

Homologous recombination provides a means for the in vivo construction of recombinant DNA molecules that may be problematic to assemble in vitro. We have investigated the efficiency of recombination within the Caenorhabditis elegans germ line as a function of the length of homology between recombining molecules. Our findings indicate that recombination can occur between molecules that share only 10 bp of terminal homology, and that 25 bp is sufficient to mediate relatively high levels of recombination. Recombination occurs with lower efficiency when the location of the homologous segment is subterminal or internal. As in yeast, recombination can also be mediated by either single- or double-stranded bridging oligonucleotides. We find that ligation between cohesive ends is highly efficient and does not require that the ends be phosphorylated; furthermore, precise intermolecular ligation between injected molecules that have blunt ends can also occur within the germ line.


Assuntos
Caenorhabditis elegans/genética , DNA Recombinante/química , Recombinação Genética , Animais , DNA Circular/química , Elementos Facilitadores Genéticos , Engenharia Genética/métodos , Células Germinativas , Proteínas de Fluorescência Verde/genética , Oligonucleotídeos/química , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Homologia de Sequência do Ácido Nucleico
14.
Mol Biol Cell ; 17(3): 1286-97, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16394106

RESUMO

The endocytic pathway of eukaryotes is essential for the internalization and trafficking of macromolecules, fluid, membranes, and membrane proteins. One of the most enigmatic aspects of this process is endocytic recycling, the return of macromolecules (often receptors) and fluid from endosomes to the plasma membrane. We have previously shown that the EH-domain protein RME-1 is a critical regulator of endocytic recycling in worms and mammals. Here we identify the RAB-10 protein as a key regulator of endocytic recycling upstream of RME-1 in polarized epithelial cells of the Caenorhabditis elegans intestine. rab-10 null mutant intestinal cells accumulate abnormally abundant RAB-5-positive early endosomes, some of which are enlarged by more than 10-fold. Conversely most RME-1-positive recycling endosomes are lost in rab-10 mutants. The abnormal early endosomes in rab-10 mutants accumulate basolaterally recycling transmembrane cargo molecules and basolaterally recycling fluid, consistent with a block in basolateral transport. These results indicate a role for RAB-10 in basolateral recycling upstream of RME-1. We found that a functional GFP-RAB-10 reporter protein is localized to endosomes and Golgi in wild-type intestinal cells consistent with a direct role for RAB-10 in this transport pathway.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Endocitose/fisiologia , Mucosa Intestinal/metabolismo , Intestinos/citologia , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Regiões Promotoras Genéticas/genética , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Proteínas rab de Ligação ao GTP/química , Proteínas rab5 de Ligação ao GTP/metabolismo
15.
Cell Metab ; 1(5): 343-54, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16054081

RESUMO

The transient receptor potential (TRP) channels are implicated in various cellular processes, including sensory signal transduction and electrolyte homeostasis. We show here that the GTL-1 and GON-2 TRPM channels regulate electrolyte homeostasis in the C. elegans intestine. GON-2 is responsible for a large outwardly rectifying current of intestinal cells, and its activity is tightly regulated by intracellular Mg(2+) levels, while GTL-1 mainly contributes to appropriate Mg(2+) responsiveness of the outwardly rectifying current. We also used nickel cytotoxicity to study the function of these channels. Both GON-2 and GTL-1 are necessary for intestinal uptake of nickel, but GTL-1 is continuously active while GON-2 is inactivated at higher Mg(2+) levels. This type of differential regulation of intestinal electrolyte absorption ensures a constant supply of electrolytes through GTL-1, while occasional bursts of GON-2 activity allow rapid return to normal electrolyte concentrations following physiological perturbations.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Eletrólitos/metabolismo , Homeostase , Mucosa Intestinal/metabolismo , Canais Iônicos/fisiologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Cálcio/metabolismo , Intestinos/citologia , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Magnésio/metabolismo , Mutação , Níquel/toxicidade , Filogenia , Transdução de Sinais/fisiologia
16.
Genetics ; 165(2): 563-74, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14573470

RESUMO

The initiation of postembryonic cell divisions by the gonadal precursors of C. elegans requires the activity of gon-2. gon-2 encodes a predicted cation channel (GON-2) of the TRPM subfamily of TRP proteins and is likely to mediate the influx of Ca(2+) and/or Mg(2+). We report here that mutations in gem-4 (gon-2 extragenic modifier) are capable of suppressing loss-of-function alleles of gon-2. gem-4 encodes a member of the copine family of Ca(2+)-dependent phosphatidylserine binding proteins. Overall, our data indicate that GEM-4 antagonizes GON-2. This antagonism could be mediated by a direct inhibition of GON-2 by GEM-4, since both proteins are predicted to be localized to the plasma membrane. Alternatively, GEM-4 could affect GON-2 activity levels by either promoting endocytosis or inhibiting exocytosis of vesicles that carry GON-2. It is also possible that GEM-4 and GON-2 act in parallel to each other. Mutation of gem-4 does not suppress the gonadal defects produced by inactivation of gon-4, suggesting that gon-4 either acts downstream of gem-4 and gon-2 or acts in a parallel regulatory pathway.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Gônadas/fisiologia , Canais Iônicos/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Divisão Celular/fisiologia , Mapeamento Cromossômico , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Dados de Sequência Molecular , Fenótipo , Fosfatidilserinas/metabolismo , Interferência de RNA
17.
Genetics ; 160(2): 481-92, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11861555

RESUMO

The protein kinase Raf is an important signaling protein. Raf activation is initiated by an interaction with GTP-bound Ras, and Raf functions in signal transmission by phosphorylating and activating a mitogen-activated protein (MAP) kinase kinase named MEK. We identified 13 mutations in the Caenorhabditis elegans lin-45 raf gene by screening for hermaphrodites with abnormal vulval formation or germline function. Weak, intermediate, and strong loss-of-function or null mutations were isolated. The phenotype caused by the most severe mutations demonstrates that lin-45 is essential for larval viability, fertility, and the induction of vulval cell fates. The lin-45(null) phenotype is similar to the mek-2(null) and mpk-1(null) phenotypes, indicating that LIN-45, MEK-2, and MPK-1 ERK MAP kinase function in a predominantly linear signaling pathway. The lin-45 alleles include three missense mutations that affect the Ras-binding domain, three missense mutations that affect the protein kinase domain, two missense mutations that affect the C-terminal 14-3-3 binding domain, three nonsense mutations, and one small deletion. The analysis of the missense mutations indicates that Ras binding, 14-3-3-binding, and protein kinase activity are necessary for full Raf function and suggests that a 14-3-3 protein positively regulates Raf-mediated signaling during C. elegans development.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Quinases raf , Alelos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Genes Letais , Larva/genética , Larva/fisiologia , Dados de Sequência Molecular , Fenótipo , Alinhamento de Sequência , Supressão Genética
18.
Bioessays ; 24(1): 38-53, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11782949

RESUMO

The cell division and differentiation events that occur during the development of the nematode Caenorhabditis elegans are nearly identical between different individuals, a feature that distinguishes this organism from larger and more complex metazoans, such as humans and Drosophila. In view of this discrepancy, it might be expected that the regulation of cell growth, division and differentiation in C. elegans would involve mechanisms separate from those utilized in larger animals. However, the results of recent genetic, molecular and cellular studies indicate that C. elegans employs an arsenal of developmental regulatory mechanisms quite similar to those wielded by its arthropod and vertebrate relatives. Thus, the nematode system is providing both novel and complementary insights into the general problem of how growth and patterning events are integrated in development. This review offers a general perspective on the regulation of cell division and growth in C. elegans, emphasizing recent studies of these crucial aspects of development.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Divisão Celular/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula , Embrião não Mamífero/fisiologia , Genes de Helmintos , Gônadas/citologia , Gônadas/crescimento & desenvolvimento , Humanos , Intestinos/citologia , Intestinos/fisiologia , Larva/anatomia & histologia , Larva/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...