Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33295874

RESUMO

Circadian clocks in fungi and animals are driven by a functionally conserved transcription-translation feedback loop. In Neurospora crassa, negative feedback is executed by a complex of Frequency (FRQ), FRQ-interacting RNA helicase (FRH), and casein kinase I (CKI), which inhibits the activity of the clock's positive arm, the White Collar Complex (WCC). Here, we show that the prd-2 (period-2) gene, whose mutation is characterized by recessive inheritance of a long 26 hr period phenotype, encodes an RNA-binding protein that stabilizes the ck-1a transcript, resulting in CKI protein levels sufficient for normal rhythmicity. Moreover, by examining the molecular basis for the short circadian period of upf-1prd-6 mutants, we uncovered a strong influence of the Nonsense Mediated Decay pathway on CKI levels. The finding that circadian period defects in two classically derived Neurospora clock mutants each arise from disruption of ck-1a regulation is consistent with circadian period being exquisitely sensitive to levels of casein kinase I.


Assuntos
Caseína Quinase I/fisiologia , Relógios Circadianos/fisiologia , Proteínas Fúngicas/fisiologia , Neurospora crassa/fisiologia , Caseína Quinase I/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Genes Fúngicos/fisiologia , Neurospora crassa/enzimologia , Neurospora crassa/genética
2.
Genetics ; 181(2): 767-81, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19015548

RESUMO

We report the discovery and validation of a set of single nucleotide polymorphisms (SNPs) between the reference Neurospora crassa strain Oak Ridge and the Mauriceville strain (FGSC 2555), of sufficient density to allow fine mapping of most loci. Sequencing of Mauriceville cDNAs and alignment to the completed genomic sequence of the Oak Ridge strain identified 19,087 putative SNPs. Of these, a subset was validated by cleaved amplified polymorphic sequence (CAPS), a simple and robust PCR-based assay that reliably distinguishes between SNP alleles. Experimental confirmation resulted in the development of 250 CAPS markers distributed evenly over the genome. To demonstrate the applicability of this map, we used bulked segregant analysis followed by interval mapping to locate the csp-1 mutation to a narrow region on LGI. Subsequently, we refined mapping resolution to 74 kbp by developing additional markers, resequenced the candidate gene, NCU02713.3, in the mutant background, and phenocopied the mutation by gene replacement in the WT strain. Together, these techniques demonstrate a generally applicable and straightforward approach for the isolation of novel genes from existing mutants. Data on both putative and validated SNPs are deposited in a customized public database at the Broad Institute, which encourages augmentation by community users.


Assuntos
Neurospora crassa/genética , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , DNA Fúngico/genética , Bases de Dados de Ácidos Nucleicos , Etiquetas de Sequências Expressas , Genes Fúngicos , Marcadores Genéticos , Mutação , Neurospora crassa/classificação , Reação em Cadeia da Polimerase , Recombinação Genética , Especificidade da Espécie
3.
Adv Genet ; 57: 49-96, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17352902

RESUMO

A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to accomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of non yeast fungi. Building from the completely sequenced 43-Mb Neurospora genome, Project 1 is pursuing the systematic disruption of genes through targeted gene replacements, phenotypic analysis of mutant strains, and their distribution to the scientific community at large. Project 2, through a primary focus in Annotation and Bioinformatics, has developed a platform for electronically capturing community feedback and data about the existing annotation, while building and maintaining a database to capture and display information about phenotypes. Oligonucleotide-based microarrays created in Project 3 are being used to collect baseline expression data for the nearly 11,000 distinguishable transcripts in Neurospora under various conditions of growth and development, and eventually to begin to analyze the global effects of loss of novel genes in strains created by Project 1. cDNA libraries generated in Project 4 document the overall complexity of expressed sequences in Neurospora, including alternative splicing alternative promoters and antisense transcripts. In addition, these studies have driven the assembly of an SNP map presently populated by nearly 300 markers that will greatly accelerate the positional cloning of genes.


Assuntos
Neurospora/genética , Sequência de Bases , Mapeamento Cromossômico , DNA Fúngico/genética , Deleção de Genes , Perfilação da Expressão Gênica , Biblioteca Gênica , Técnicas Genéticas , Genoma Fúngico , Genômica , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...