Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-24, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971852

RESUMO

Temperature-mediated preservation techniques offer a simple, scalable, effective, and fairly efficient method of long-term storage of food products. In order to ensure the uninterrupted availability of cheese across the globe, a critical understanding of its techno-functional properties as affected by freezing and frozen storage is essential. Detailed studies of temperature-mediated molecular dynamics are available for relatively simpler and homogeneous systems like pure water, proteins, and carbohydrates. However, for heterogeneous systems like cheese, inter-component interactions at sub-zero temperatures have not been extensively covered. Ice crystallization during freezing causes dehydration of caseins and the formation of concentration gradients within the cheese matrix, causing undesirable changes in texture-functional attributes, but findings vary due to experimental conditions. A suitable combination of sample size, freezing rate, aging, and tempering can extend the shelf life of high- and low-moisture Mozzarella cheese. However, limited studies on other cheeses suggest that effects and suitability differ by cheese type, in most cases adversely affecting texture and functional attributes. This review presents an overview of the understanding of the effects of refrigeration, freezing techniques, and frozen storage on structural components of cheese, most prominently Mozzarella cheese, and the corresponding impact on microstructure and functionality. Also included are the mechanism of ice formation and relevant mathematical models for estimation of the thermophysical properties of cheese to assist in designing optimized schemes for their frozen storage. The review also highlights the lack of unanimity in critical understanding concerning the effect of freezing on the long-term storage of Mozzarella cheese with respect to its functionality.

2.
Comput Ind Eng ; 172023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37560446

RESUMO

Primary care plays a vital role for individuals and families in accessing care, keeping well, and improving quality of life. However, the complexities and uncertainties in the primary care delivery system (e.g., patient no-shows/walk-ins, staffing shortage, COVID-19 pandemic) have brought significant challenges in its operations management, which can potentially lead to poor patient outcomes and negative primary care operations (e.g., loss of productivity, inefficiency). This paper presents a decision analytics approach developed based on predictive analytics and hybrid simulation to better facilitate management of the underlying complexities and uncertainties in primary care operations. A case study was conducted in a local family medicine clinic to demonstrate the use of this approach for patient no-show management. In this case study, a patient no-show prediction model was used in conjunction with an integrated agent-based and discrete-event simulation model to design and evaluate double-booking strategies. Using the predicted patient no-show information, a prediction-based double-booking strategy was created and compared against two other strategies, namely random and designated time. Scenario-based experiments were then conducted to examine the impacts of different double-booking strategies on clinic's operational outcomes, focusing on the trade-offs between the clinic productivity (measured by daily patient throughput) and efficiency (measured by visit cycle and patient wait time for doctor). The results showed that the best productivity-efficiency balance was derived under the prediction-based double-booking strategy. The proposed hybrid decision analytics approach has the potential to better support decision-making in primary care operations management and improve the system's performance. Further, it can be generalized in the context of various healthcare settings for broader applications.

3.
Food Chem ; 336: 127625, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32771897

RESUMO

The solubility of carbon dioxide (CO2) in the moisture and protein components of cheese matrices and the influence of changing pH, salt and temperature levels remains unclear. In this study, model casein matrices were prepared, by renneting of micellar casein concentrate (MCC), with modulation of salt and pH levels by adding salt and glucono delta-lactone, respectively, to the MCC solutions prior to renneting. Different moisture-to-protein levels were achieved by freeze-drying, incubation of samples at different relative humidities, or by applying varying pressures during gel manufacture. The CO2 solubility of samples decreased linearly with both increasing temperature and salt-in-moisture content, whereas solubility of CO2 increased with increasing pH. A non-linear relationship was observed between CO2 solubility and the moisture-to-protein ratio of experimental samples. Overall, such knowledge may be applied to improve the quality and consistency of eye-type cheese, and in particular to avoid development of undesirable slits and cracks.


Assuntos
Dióxido de Carbono/química , Caseínas/química , Cloreto de Sódio/química , Água/química , Queijo/análise , Concentração de Íons de Hidrogênio , Pressão Parcial , Solubilidade , Temperatura
4.
Food Res Int ; 132: 109089, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32331666

RESUMO

Peptides have been reported to serve as precursors in the generation of alkylpyrazines, key aroma compounds in heated foods. Most previous studies, concerned with the generation of pyrazines via the Maillard reaction, were conducted using model systems of varying complexities. However, the formation of pyrazines in real food systems has received less attention. The aim of this study was to investigate the impact of adding protein hydrolysates as precursors for the generation of alkylpyrazines in baked food products such as bread and cookies. Two whey protein hydrolysates, obtained using either trypsin or proteinase from Aspergillus melleus, were used in the presented study. 2,5-Dimethylpyrazine was produced in both food systems. Therefore, its formation was quantitatively monitored using a stable isotope dilution assay. Additionally, sensory evaluation was performed. Results demonstrated that the addition of the protein hydrolysates were effective in promoting the generation of 2,5-dimethylpyrazine and other aroma compounds in two well-known food products.


Assuntos
Pão , Hidrolisados de Proteína/metabolismo , Pirazinas/metabolismo , Proteínas do Soro do Leite/química , Soro do Leite/química , Aspergillus/enzimologia , Cromatografia Gasosa-Espectrometria de Massas , Reação de Maillard , Odorantes/análise , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Hidrolisados de Proteína/química , Pirazinas/análise , Paladar
5.
Food Res Int ; 125: 108525, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31554097

RESUMO

The individual roles of hydrolysis of αS1- and ß-caseins, and calcium solubilization on the fracture properties of semi-hard cheeses, such as Maasdam and other eye-type cheeses, remain unclear. In this study, the hydrolysis patterns of casein were selectively altered by adding a chymosin inhibitor to the curd/whey mixture during cheese manufacture, by substituting fermentation-produced bovine chymosin (FPBC) with fermentation-produced camel chymosin (FPCC), or by modulating ripening temperature. Moreover, the level of insoluble calcium during ripening was quantified in all cheeses. Addition of a chymosin inhibitor, substitution of FPBC with FPCC, or ripening of cheeses at a consistent low temperature (8 °C) decreased the hydrolysis of αS1-casein by ~95%, ~45%, or ~30%, respectively, after 90 d of ripening, whereas ~35% of ß-casein was hydrolysed in that time for all cheeses, except for those ripened at a lower temperature (~17%). The proportion of insoluble calcium as a percentage of total calcium decreased significantly from ~75% to ~60% between 1 and 90 d. The rigidity or strength of the cheese matrix was found to be higher (as indicated by higher fracture stress) in cheeses with lower levels of proteolysis or higher levels of intact caseins, primarily αS1-casein. However, contrary to the expectation that shortness of cheese texture is associated with αS1-casein hydrolysis, fracture strain was significantly positively correlated with the level of intact ß-casein and insoluble calcium content, indicating that the cheeses with low levels of intact ß-casein or insoluble calcium content were more likely to be shorter in texture (i.e., lower fracture strain). Overall, this study suggests that the fracture properties of cheese can be modified by selective hydrolysis of caseins, altering the level of insoluble calcium or both. Such approaches could be applied to design cheese with specific properties.


Assuntos
Cálcio , Caseínas , Queijo , Animais , Cálcio/química , Cálcio/metabolismo , Camelus , Caseínas/química , Caseínas/metabolismo , Bovinos , Quimosina/antagonistas & inibidores , Quimosina/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Proteólise
6.
Food Chem ; 278: 533-544, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30583408

RESUMO

The generation of pyrazines in model systems containing enzymatically hydrolyzed whey protein under dry heating conditions was studied. Pyrazines are important Maillard flavor compounds. Hydrolysates, obtained with different peptidases (pepsine, chymosine, thermolysin and a non-specific peptidase from Aspergillus melleus), contained a varying peptide profile and free amino acid content. The impact of each hydrolysate on the generation of flavor volatiles was measured by HS-SPME-GC/MS. The presence of oligopeptides had an enhancing role on the generation of pyrazines while, in contrast, free amino acids contributed to a lesser extent in pyrazine formation, except in the hydrolysate using the non-specific peptidase because of its high free amino acid content. Typically, 2,5(6)-dimethylpyrazine was the most abundant pyrazine found, although in the chymotripsine hydrolysate also other pyrazines were dominant. The hydrolysate obtained from the non-specific peptidase contained a larger variety of pyrazines, including the typical Strecker aldehydes originating from specific amino acids. This study demonstrates that oligopeptides are important Maillard flavor precursors.


Assuntos
Reação de Maillard , Hidrolisados de Proteína , Pirazinas , Proteínas do Soro do Leite , Aminoácidos , Cromatografia Gasosa-Espectrometria de Massas , Oligopeptídeos , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Pirazinas/química , Pirazinas/metabolismo , Microextração em Fase Sólida , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/metabolismo
7.
J Dairy Sci ; 101(7): 5724-5737, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29627243

RESUMO

This study investigated the effect of centrifugation (9,000 × g, 50°C, flow rate = 1,000 L/h), as well as the incorporation of high-heat-treated (HHT) centrifugate into cheese milk on the composition, texture, and ripening characteristics of Maasdam cheese. Neither centrifugation nor incorporation of HHT centrifugate into cheese milk had a pronounced effect on the compositional parameters of any experimental cheeses, except for moisture and moisture in nonfat substance (MNFS) levels. Incorporation of HHT centrifugate at a rate of 6 to 10% of the total milk weight into centrifuged milk increased the level of denatured whey protein in the cheese milk and also increased the level of MNFS in the resultant cheese compared with cheeses made from centrifuged milk and control cheeses; moreover, cheese made from centrifuged milk had ∼3% higher moisture content on average than control cheeses. Centrifugation of cheese milk reduced the somatic cell count by ∼95% relative to the somatic cell count in raw milk. Neither centrifugation nor incorporation of HHT centrifugate into cheese milk had a significant effect on age-related changes in pH, lactate content, and levels of primary and secondary proteolysis. However, the value for hardness was significantly lower for cheeses made from milk containing HHT centrifugate than for other experimental cheese types. Overall, centrifugation appeared to have little effect on composition, texture, and ripening characteristics of Maasdam cheese. However, care should be taken when incorporating HHT centrifugate into cheese milk, because such practices can influence the level of moisture, MNFS, and texture (particularly hardness) of resultant cheeses. Such differences may have the potential to influence subsequent eye development characteristic, although no definitive trends were observed in the present study and further research on this is recommended.


Assuntos
Queijo/normas , Manipulação de Alimentos/métodos , Animais , Centrifugação , Temperatura Alta , Concentração de Íons de Hidrogênio , Leite
8.
J Dairy Sci ; 101(7): 5738-5750, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29550125

RESUMO

Centrifugation is a common milk pretreatment method for removal of Clostridium spores which, on germination, can produce high levels of butyric acid and gas, resulting in rancid, gassy cheese. The aim of this study was to determine the effect of centrifugation of milk, as well as incorporation of high heat-treated centrifugate into cheese milk, on the microbial and volatile profile of Maasdam cheese. To facilitate this, 16S rRNA amplicon sequencing in combination with a selective media-based approach were used to study the microbial composition of cheese during maturation, and volatile organic compounds within the cheese matrix were analyzed by HPLC and solid-phase microextraction coupled with gas chromatography-mass spectrometry. Both culture-based and molecular approaches revealed major differences in microbial populations within the cheese matrix before and after warm room ripening. During warm room ripening, an increase in counts of propionic acid bacteria (by ∼101.5 cfu) and nonstarter lactic acid bacteria (by ∼108 cfu) and a decrease in the counts of Lactobacillus helveticus (by ∼102.5 cfu) were observed. Lactococcus species dominated the curd population throughout ripening, followed by Lactobacillus, Propionibacterium, and Leuconostoc, and the relative abundance of these accounted for more than 99% of the total genera, as revealed by high-throughput sequencing. Among subdominant microflora, the overall relative abundance of Clostridium sensu stricto was lower in cheeses made from centrifuged milk than control cheeses, which coincided with lower levels of butyric acid. Centrifugation as well as incorporation of high heat-treated centrifugate into cheese milk seemed to have little effect on the volatile profile of Maasdam cheese, except for butyric acid levels. Overall, this study suggests that centrifugation of milk before cheesemaking is a suitable method for controlling undesirable butyric acid fermentation without significantly altering the levels of other volatile organic compounds of Maasdam cheese.


Assuntos
Queijo/microbiologia , Queijo/normas , Manipulação de Alimentos/métodos , Compostos Orgânicos Voláteis/análise , Animais , Centrifugação , Temperatura Alta , Leite , RNA Ribossômico 16S
9.
J Dairy Sci ; 101(3): 2692-2709, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29055536

RESUMO

The quality and commercial value of cheese are primarily determined by its physico-chemical properties (e.g., melt, stretch, flow, and color), specific sensory attributes (e.g., flavor, texture, and mouthfeel), usage characteristics (e.g., convenience), and nutritional properties (e.g., nutrient profile, bioavailability, and digestibility). Many of these functionalities are determined by cheese structure, requiring an appropriate understanding of the relationships between structure and functionality to design bespoke functionalities. This review provides an overview of a broad range of functional properties of cheese and how they are influenced by the structural organization of cheese components and their interactions, as well as how they are influenced by environmental factors (e.g., pH and temperature).


Assuntos
Queijo , Animais , Queijo/análise , Cor , Avaliação Nutricional , Relação Estrutura-Atividade , Paladar , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...