Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 60(14): 10550-10564, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34184880

RESUMO

Atomic arrangements in the mixed-valence oxide U3O7 are refined from high-resolution neutron scattering data. The crystallographic model describes a long-range structural order in a U60O140 primitive cell (space group P42/n) containing distorted cuboctahedral oxygen clusters. By combining experimental data and electronic structure calculations accounting for spin-orbit interactions, we provide robust evidence of an interplay between charge localization and the magnetic moments carried by the uranium atoms. The calculations predict U3O7 to be a semiconducting solid with a band gap of close to 0.32 eV, and a more pronounced charge-transfer insulator behavior as compared to the well-known Mott insulator UO2. Most uranium ions (56 out of 60) occur in 9-fold and 10-fold coordinated environments, surrounding the oxygen clusters, and have a tetravalent (24 out of 60) or pentavalent (32 out of 60) state. The remaining uranium ions (4 out of 60) are not contiguous to the oxygen cuboctahedra and have a very compact, 8-fold coordinated environment with two short (2 × 1.93(3) Å) "oxo-type" bonds. The higher Hirshfeld charge and the diamagnetic character point to a hexavalent state for these four uranium ions. Hence, the valence state distribution corresponds to 24/60 × U(IV) + 32/60 U(V) + 4/60 U(VI). The tetravalent and pentavalent uranium ions are predicted to carry noncollinear magnetic moments (with amplitudes of 1.6 and 0.8 µB, respectively), resulting in canted ferromagnetic order in characteristic layers within the overall fluorite-related structure.

2.
Dalton Trans ; 49(30): 10486-10497, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32687136

RESUMO

Layered Li-rich/Mn-rich NMC (LMR-NMC) is characterized by high initial specific capacities of more than 250 mA h g-1, lower cost due to a lower Co content and higher thermal stability than LiCoO2. However, its commercialisation is currently still hampered by significant voltage fade, which is caused by irreversible transition metal ion migration to emptied Li positions via tetrahedral interstices upon electrochemical cycling. This structural change is strongly correlated with anionic redox chemistry of the oxygen sublattice and has a detrimental effect on electrochemical performance. In a fully charged state, up to 4.8 V vs. Li/Li+, Mn4+ is prone to migrate to the Li layer. The replacement of Mn4+ for an isovalent cation such as Sn4+ which does not tend to adopt tetrahedral coordination and shows a higher metal-oxygen bond strength is considered to be a viable strategy to stabilize the layered structure upon extended electrochemical cycling, hereby decreasing voltage fade. The influence of Sn4+ on the voltage fade in partially charged LMR-NMC is not yet reported in the literature, and therefore, we have investigated the structure and the corresponding electrochemical properties of LMR-NMC with different Sn concentrations. We determined the substitution limit of Sn4+ in Li1.2Ni0.13Co0.13Mn0.54-xSnxO2 by powder X-ray diffraction and transmission electron microscopy to be x≈ 0.045. The limited solubility of Sn is subsequently confirmed by density functional theory calculations. Voltage fade for x = 0 and x = 0.027 has been comparatively assessed within the 3.00 V-4.55 V (vs. Li/Li+) potential window, from which it is concluded that replacing Mn4+ by Sn4+ cannot be considered as a viable strategy to inhibit voltage fade within this window, at least with the given restricted doping level.

3.
Chem Mater ; 31(15)2019.
Artigo em Inglês | MEDLINE | ID: mdl-32165788

RESUMO

Solar-energy plays an important role in solving serious environmental problems and meeting high-energy demand. However, the lack of suitable materials hinders further progress of this technology. Here, we present the largest inorganic solar-cell material search to date using density functional theory (DFT) and machine-learning approaches. We calculated the spectroscopic limited maximum efficiency (SLME) using Tran-Blaha modified Becke-Johnson potential for 5097 non-metallic materials and identified 1997 candidates with an SLME higher than 10%, including 934 candidates with suitable convex-hull stability and effective carrier mass. Screening for 2D-layered cases, we found 58 potential materials and performed G0W0 calculations on a subset to estimate the prediction-uncertainty. As the above DFT methods are still computationally expensive, we developed a high accuracy machine learning model to pre-screen efficient materials and applied it to over a million materials. Our results provide a general framework and universal strategy for the design of high-efficiency solar cell materials. The data and tools are publicly distributed at: https://www.ctcms.nist.gov/~knc6/JVASP.html, https://www.ctcms.nist.gov/jarvisml/, https://jarvis.nist.gov/ and https://github.com/usnistgov/jarvis.

4.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 4): 717-732, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830728

RESUMO

Bi2Se3 is a thermoelectric material and a topological insulator. It is slightly conducting in its bulk due to the presence of defects and by controlling the defects different physical properties can be fine tuned. However, studies of the defects in this material are often contradicting or inconclusive. Here, the defect structure of Bi2Se3 is studied with a combination of techniques: high-resolution scanning transmission electron microscopy (HR-STEM), high-resolution energy-dispersive X-ray (HR-EDX) spectroscopy, precession electron diffraction tomography (PEDT), X-ray diffraction (XRD) and first-principles calculations using density functional theory (DFT). Based on these results, not only the observed defects are discussed, but also the discrepancies in results or possibilities across the techniques. STEM and EDX revealed interstitial defects with mainly Bi character in an octahedral coordination in the van der Waals gap, independent of the applied sample preparation method (focused ion beam milling or cryo-crushing). The inherent character of these defects is supported by their observation in the structure refinement of the EDT data. Moreover, the occupancy probability of the defects determined by EDT is inversely proportional to their corresponding DFT calculated formation energies. STEM also showed the migration of some atoms across and along the van der Waals gap. The kinetic barriers calculated using DFT suggest that some paths are possible at room temperature, while others are most probably beam induced.

5.
Nat Commun ; 8: 14925, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358039

RESUMO

Copper chalcogenides find applications in different domains including photonics, photothermal therapy and photovoltaics. CuTe nanocrystals have been proposed as an alternative to noble metal particles for plasmonics. Although it is known that deviations from stoichiometry are a prerequisite for plasmonic activity in the near-infrared, an accurate description of the material and its (optical) properties is hindered by an insufficient understanding of the atomic structure and the influence of defects, especially for materials in their nanocrystalline form. We demonstrate that the structure of Cu1.5±xTe nanocrystals can be determined using electron diffraction tomography. Real-space high-resolution electron tomography directly reveals the three-dimensional distribution of vacancies in the structure. Through first-principles density functional theory, we furthermore demonstrate that the influence of these vacancies on the optical properties of the nanocrystals is determined. Since our methodology is applicable to a variety of crystalline nanostructured materials, it is expected to provide unique insights concerning structure-property correlations.

6.
Phys Chem Chem Phys ; 19(8): 6292, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28186219

RESUMO

Correction for 'First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon' by Marnik Bercx et al., Phys. Chem. Chem. Phys., 2016, 18, 20542-20549.

7.
Anal Chem ; 89(6): 3326-3334, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28230973

RESUMO

Chrome yellow refers to a group of synthetic inorganic pigments that became popular as an artist's material from the second quarter of the 19th century. The color of the pigment, in which the chromate ion acts as a chromophore, is related to its chemical composition (PbCr1-xSxO4, with 0 ≤ x ≤ 0.8) and crystalline structure (monoclinic/orthorhombic). Their shades range from the yellow-orange to the paler yellow tones with increasing sulfate amount. These pigments show remarkable signs of degradation after limited time periods. Pure PbCrO4 (crocoite in its natural form) has a deep yellow color and is relatively stable, while the coprecipitate with lead sulfate (PbCr1-xSxO4) has a paler shade and seems to degrade faster. This degradation is assumed to be related to the reduction of Cr(VI) to Cr(III). We show that, when the the sulfur(S)-content in chrome yellow increases, the band gap increases. Typically, when increasing the band gap, one might assume that a decrease in photoactivity is the result. However, the photoactivity relative to the Cr content and, thus, Cr reduction of sulfur-rich PbCr1-xSxO4 is found to be much higher compared to the sulfur-poor or nondoped lead chromates. This discrepancy can be explained by the evolution of the crystal and electronic structure as a function of the sulfur content: first-principles density functional theory calculations show that both the absorption coefficient and reflection coefficients of the lead chromates change as a result of the sulfate doping in such a way that the generation of electron-hole pairs under illumination relative to the total Cr content increases. These changes in the material properties explain why paler shade yellow colors of this pigment are more prone to discoloration. The electronic structure calculations also demonstrate that lead chromate and its coprecipitates are p-type semiconductors, which explains the observed reduction reaction. Because understanding this phenomenon is valuable in the field of cultural heritage, this study is the first joint action of photoelectrochemical measurements and first-principles calculations to approve the higher tendency of sulfur-rich lead chromates to darken.

8.
Phys Chem Chem Phys ; 19(3): 1945-1952, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28009024

RESUMO

We investigate the role of transition metal atoms of group V-b (V, Nb, and Ta) and VI-b (Cr, Mo, and W) as n- or p-type dopants in anatase TiO2 using thermodynamic principles and density functional theory with the Heyd-Scuseria-Ernzerhof HSE06 hybrid functional. The HSE06 functional provides a realistic value for the band gap, which ensures a correct classification of dopants as shallow or deep donors or acceptors. Defect formation energies and thermodynamic transition levels are calculated taking into account the constraints imposed by the stability of TiO2 and the solubility limit of the impurities. Nb, Ta, W and Mo are identified as shallow donors. Although W provides two electrons, Nb and Ta show a considerably lower formation energy, in particular under O-poor conditions. Mo donates in principle one electron, but under specific conditions can turn into a double donor. V impurities are deep donors and Cr shows up as an amphoteric defect, thereby acting as an electron trapping center in n-type TiO2 especially under O-rich conditions. A comparison with the available experimental data yields excellent agreement.

9.
ACS Nano ; 10(9): 8778-87, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27584869

RESUMO

Topological insulators (TIs) are renowned for their exotic topological surface states (TSSs) that reside in the top atomic layers, and hence, detailed knowledge of the surface top atomic layers is of utmost importance. Here we present the remarkable morphology changes of Bi2Te3 surfaces, which have been freshly cleaved in air, upon subsequent systematic annealing in ultrahigh vacuum and the resulting effects on the local and area-averaging electronic properties of the surface states, which are investigated by combining scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and Auger electron spectroscopy (AES) experiments with density functional theory (DFT) calculations. Our findings demonstrate that the annealing induces the formation of a Bi bilayer atop the Bi2Te3 surface. The adlayer results in n-type doping, and the atomic defects act as scattering centers of the TSS electrons. We also investigated the annealing-induced Bi bilayer surface on Bi2Te3 via voltage-dependent quasi-particle-interference (QPI) mapping of the surface local density of states and via comparison with the calculated constant-energy contours and QPI patterns. We observed closed hexagonal patterns in the Fourier transform of real-space QPI maps with secondary outer spikes. DFT calculations attribute these complex QPI patterns to the appearance of a "second" cone due to the surface charge transfer between the Bi bilayer and the Bi2Te3. Annealing in ultrahigh vacuum offers a facile route for tuning of the topological properties and may yield similar results for other topological materials.

10.
Phys Chem Chem Phys ; 18(30): 20542-9, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27405243

RESUMO

Chalcopyrite semiconductors are of considerable interest for application as absorber layers in thin-film photovoltaic cells. When growing films of these compounds, however, they are often found to contain CuAu-like domains, a metastable phase of chalcopyrite. It has been reported that for CuInS2, the presence of the CuAu-like phase improves the short circuit current of the chalcopyrite-based photovoltaic cell. We investigate the thermodynamic stability of both phases for a selected list of I-III-VI2 materials using a first-principles density functional theory approach. For the CuIn-VI2 compounds, the difference in formation energy between the chalcopyrite and CuAu-like phase is found to be close to 2 meV per atom, indicating a high likelihood of the presence of CuAu-like domains. Next, we calculate the spectroscopic limited maximum efficiency (SLME) of the CuAu-like phase and compare the results with those of the corresponding chalcopyrite phase. We identify several candidates with a high efficiency, such as CuAu-like CuInS2, for which we obtain an SLME of 29% at a thickness of 500 nm. We observe that the SLME can have values above the Shockley-Queisser (SQ) limit, and show that this can occur because the SQ limit assumes the absorptivity to be a step function, thus overestimating the radiative recombination in the detailed balance approach. This means that it is possible to find higher theoretical efficiencies within this framework simply by calculating the J-V characteristic with an absorption spectrum. Finally, we expand our SLME analysis to indirect band gap absorbers by studying silicon, and find that the SLME quickly overestimates the reverse saturation current of indirect band gap materials, drastically lowering their calculated efficiency.

11.
Sci Rep ; 6: 20446, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26854336

RESUMO

Fulfillment of the promise of transparent electronics has been hindered until now largely by the lack of semiconductors that can be doped p-type in a stable way, and that at the same time present high hole mobility and are highly transparent in the visible spectrum. Here, a high-throughput study based on first-principles methods reveals four oxides, namely X2SeO2, with X = La, Pr, Nd, and Gd, which are unique in that they exhibit excellent characteristics for transparent electronic device applications - i.e., a direct band gap larger than 3.1 eV, an average hole effective mass below the electron rest mass, and good p-type dopability. Furthermore, for La2SeO2 it is explicitly shown that Na impurities substituting La are shallow acceptors in moderate to strong anion-rich growth conditions, with low formation energy, and that they will not be compensated by anion vacancies VO or VSe.

12.
ACS Appl Mater Interfaces ; 7(19): 10617-22, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25923131

RESUMO

Ultrafine ZnO nanocrystals with a thickness down to 0.25 nm are grown by a metalorganic chemical vapor deposition method. Electronic band structures and native point defects of ZnO nanocrystals are studied by a combination of scanning tunneling microscopy/spectroscopy and first-principles density functional theory calculations. Below a critical thickness of ∼1 nm ZnO adopts a graphitic-like structure and exhibits a wide band gap similar to its wurtzite counterpart. The hexagonal wurtzite structure, with a well-developed band gap evident from scanning tunneling spectroscopy, is established for a thickness starting from ∼1.4 nm. With further increase of the thickness to 2 nm, VO-VZn defect pairs are easily produced in ZnO nanocrystals due to the self-compensation effect in highly doped semiconductors.

13.
Phys Chem Chem Phys ; 17(4): 2884, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25437121

RESUMO

Correction for 'High throughput first-principles calculations of bixbyite oxides for TCO applications' by Nasrin Sarmadian et al., Phys. Chem. Chem. Phys., 2014, 16, 17724-17733.

14.
Phys Chem Chem Phys ; 16(33): 17724-33, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25030767

RESUMO

We present a high-throughput computing scheme based on density functional theory (DFT) to generate a class of oxides and screen them with the aim of identifying those that might be electronically appropriate for transparent conducting oxide (TCO) applications. The screening criteria used are a minimum band gap to ensure sufficient transparency, a band edge alignment consistent with easy n- or p-type dopability, and a minimum thermodynamic phase stability to be experimentally synthesizable. Following this scheme we screened 23 binary and 1518 ternary bixbyite oxides in order to identify promising candidates, which can then be a subject of an in-depth study. The results for the known TCOs are in good agreement with the reported data in the literature. We suggest a list of several new potential TCOs, including both n- and p-type compounds.

15.
Nanoscale ; 4(19): 5960-4, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22903371

RESUMO

Thin films of heavily B-doped nanocrystalline diamond (B:NCD) have been investigated by a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy performed on a state-of-the-art aberration corrected instrument to determine the B concentration, distribution and the local B environment. Concentrations of ~1 to 3 at.% of boron are found to be embedded within individual grains. Even though most NCD grains are surrounded by a thin amorphous shell, elemental mapping of the B and C signal shows no preferential embedding of B in these amorphous shells or in grain boundaries between the NCD grains, in contrast with earlier work on more macroscopic superconducting polycrystalline B-doped diamond films. Detailed inspection of the fine structure of the boron K-edge and comparison with density functional theory calculated fine structure energy-loss near-edge structure signatures confirms that the B atoms present in the diamond grains are substitutional atoms embedded tetrahedrally into the diamond lattice.

16.
Ultramicroscopy ; 109(7): 802-14, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19386419

RESUMO

We present a new method to measure structure factors from electron spot diffraction patterns recorded under almost parallel illumination in transmission electron microscopes. Bloch wave refinement routines have been developed to refine the crystal thickness, its orientation and structure factors by comparison of experimentally recorded and calculated intensities. Our method requires a modicum of computational effort, making it suitable for contemporary personal computers. Frozen lattice and Bloch wave simulations of GaAs diffraction patterns are used to derive optimised experimental conditions. Systematic errors are estimated from the application of the method to simulated diffraction patterns and rules for the recognition of physically reasonable initial refinement conditions are derived. The method is applied to the measurement of the 200 structure factor for GaAs. We found that the influence of inelastically scattered electrons is negligible. Additionally, we measured the 200 structure factor from zero loss filtered two-dimensional convergent beam electron diffraction patterns. The precision of both methods is found to be comparable and the results agree well with each other. A deviation of more than 20% from isolated atom scattering data is observed, whereas close agreement is found with structure factors obtained from density functional theory [A. Rosenauer, M. Schowalter, F. Glas, D. Lamoen, Phys. Rev. B 72 (2005), 085326-1], which account for the redistribution of electrons due to chemical bonding via modified atomic scattering amplitudes.

17.
Ultramicroscopy ; 108(12): 1504-13, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18514420

RESUMO

Thermal diffuse scattered electrons significantly contribute to high-resolution transmission electron microscopy images. Their intensity adds to the background and is peaked at positions of atomic columns. In this paper we suggest an approximation to simulate intensity of thermal diffuse scattered electrons in plane-wave illumination transmission electron microscopy using an emission-potential multislice algorithm which is computationally less intensive than the frozen lattice approximation or the mutual intensity approach. Intensity patterns are computed for Au and InSb for different crystal orientations. These results are compared with intensities from the frozen lattice approximation based on uncorrelated vibration of atoms as well as with the frozen phonon approximation for Au. The frozen phonon method uses a detailed phonon model based on force constants we computed by a density functional theory approach. The comparison shows that our suggested emission-potential method is in close agreement with both the frozen lattice and the frozen phonon approximations.

18.
J Chem Inf Model ; 48(1): 99-108, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18173253

RESUMO

TMC114, a potent novel HIV-1 protease inhibitor, remains active against a broad spectrum of mutant viruses. In order to bind to a variety of mutants, the compound needs to make strong, preferably backbone, interactions and have enough conformational flexibility to adapt to the changing geometry of the active site. The conformational analysis of TMC114 in the gas phase yielded 43 conformers in which five types of intramolecular H-bond interactions could be observed. All 43 conformers were subject to both rigid and flexible ligand docking in the wild-type and a triple mutant (L63P/V82T/I84V) of HIV-1 protease. The largest binding energy was calculated for the conformations that are close to the conformation observed in the X-ray complexes of TMC114 and HIV-1 protease.


Assuntos
Inibidores da Protease de HIV/química , Protease de HIV/metabolismo , Sulfonamidas/química , Algoritmos , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Darunavir , Gases/química , Inibidores da Protease de HIV/farmacologia , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Conformação Molecular , Método de Monte Carlo , Sulfonamidas/farmacologia , Termodinâmica , Água/química
19.
Acta Crystallogr B ; 62(Pt 6): 966-71, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17108648

RESUMO

The atomic coordinates of the crystal structure of nanoscale Ni4Ti3 precipitates in Ni-rich NiTi is refined by means of a least-squares method based on intensity measures of electron-diffraction patterns. The optimization is performed in combination with density functional theory calculations and has yielded an R\bar 3 symmetry with slightly different atomic positions when compared with the existing structure. The new unit cell offers a better understanding of the lattice deformation from the B2 matrix.


Assuntos
Ligas/química , Níquel/química , Titânio/química , Cristalografia , Elétrons , Microscopia Eletrônica de Transmissão , Modelos Químicos , Tamanho da Partícula , Teoria Quântica , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...