Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(6): e2212003120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719915

RESUMO

While establishing an invasive infection, the dormant conidia of Aspergillus fumigatus transit through swollen and germinating stages, to form hyphae. During this morphotype transition, the conidial cell wall undergoes dynamic remodeling, which poses challenges to the host immune system and antifungal drugs. However, such cell wall reorganization during conidial germination has not been studied so far. Here, we explored the molecular rearrangement of Aspergillus fumigatus cell wall polysaccharides during different stages of germination. We took advantage of magic-angle spinning NMR to investigate the cell wall polysaccharides, without employing any destructive method for sample preparation. The breaking of dormancy was associated with a significant change in the molar ratio between the major polysaccharides ß-1,3-glucan and α-1,3-glucan, while chitin remained equally abundant. The use of various polarization transfers allowed the detection of rigid and mobile polysaccharides; the appearance of mobile galactosaminogalactan was a molecular hallmark of germinating conidia. We also report for the first time highly abundant triglyceride lipids in the mobile matrix of conidial cell walls. Water to polysaccharides polarization transfers revealed an increased surface exposure of glucans during germination, while chitin remained embedded deeper in the cell wall, suggesting a molecular compensation mechanism to keep the cell wall rigidity. We complement the NMR analysis with confocal and atomic force microscopies to explore the role of melanin and RodA hydrophobin on the dormant conidial surface. Exemplified here using Aspergillus fumigatus as a model, our approach provides a powerful tool to decipher the molecular remodeling of fungal cell walls during their morphotype switching.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Aspergillus fumigatus/metabolismo , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Quitina/metabolismo , Glucanos/metabolismo , Parede Celular/metabolismo
2.
Front Mol Neurosci ; 14: 670513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276304

RESUMO

Infectious proteins or prions are a remarkable class of pathogens, where pathogenicity and infectious state correspond to conformational transition of a protein fold. The conformational change translates into the formation by the protein of insoluble amyloid aggregates, associated in humans with various neurodegenerative disorders and systemic protein-deposition diseases. The prion principle, however, is not limited to pathogenicity. While pathological amyloids (and prions) emerge from protein misfolding, a class of functional amyloids has been defined, consisting of amyloid-forming domains under natural selection and with diverse biological roles. Although of great importance, prion amyloid structures remain challenging for conventional structural biology techniques. Solid-state nuclear magnetic resonance (SSNMR) has been preferentially used to investigate these insoluble, morphologically heterogeneous aggregates with poor crystallinity. SSNMR methods have yielded a wealth of knowledge regarding the fundamentals of prion biology and have helped to solve the structures of several prion and prion-like fibrils. Here, we will review pathological and functional amyloid structures and will discuss some of the obtained structural models. We will finish the review with a perspective on integrative approaches combining solid-state NMR, electron paramagnetic resonance and cryo-electron microscopy, which can complement and extend our toolkit to structurally explore various facets of prion biology.

3.
Curr Top Microbiol Immunol ; 427: 109-131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31974760

RESUMO

Among the Gram-negative bacterial secretion systems, type III secretion systems (T3SS) possess a unique extracellular molecular apparatus called the needle. This macromolecular protein assembly is a nanometre-size filament formed by the helical arrangement of hundreds of copies of a single, small protein, which is highly conserved between T3SSs from animal to plant bacterial pathogens. The needle filament forms a hollow tube with a channel ~20 Å in diameter that serves as a conduit for proteins secreted into the targeted host cell. In the past ten years, technical breakthroughs in biophysical techniques such as cryo-electron microscopy (cryo-EM) and solid-state NMR (SSNMR) spectroscopy have uncovered atomic resolution details about the T3SS needle assembly. Several high-resolution structures of Salmonella typhimurium and Shigella flexneri T3SS needles have been reported demonstrating a common structural fold. These structural models have been used to explain the active role of the needle in transmitting the host-cell contact signal from the tip to the base of the T3SS through conformational changes as well as during the injection of effector proteins. In this chapter, we summarize the current knowledge about the structure and the role of the T3SS needle during T3SS assembly and effector secretion.


Assuntos
Sistemas de Secreção Tipo III/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Ressonância Magnética Nuclear Biomolecular , Salmonella typhimurium/química , Shigella flexneri/química , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/ultraestrutura
4.
Nat Commun ; 10(1): 1919, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015472

RESUMO

Bacteria of the genera Pseudomonas and Bacillus can promote plant growth and protect plants from pathogens. However, the interactions between these plant-beneficial bacteria are understudied. Here, we explore the interaction between Bacillus subtilis 3610 and Pseudomonas chlororaphis PCL1606. We show that the extracellular matrix protects B. subtilis colonies from infiltration by P. chlororaphis. The absence of extracellular matrix results in increased fluidity and loss of structure of the B. subtilis colony. The P. chlororaphis type VI secretion system (T6SS) is activated upon contact with B. subtilis cells, and stimulates B. subtilis sporulation. Furthermore, we find that B. subtilis sporulation observed prior to direct contact with P. chlororaphis is mediated by histidine kinases KinA and KinB. Finally, we demonstrate the importance of the extracellular matrix and the T6SS in modulating the coexistence of the two species on melon plant leaves and seeds.


Assuntos
Bacillus subtilis/genética , Cucurbitaceae/microbiologia , Matriz Extracelular/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Microbianas/genética , Pseudomonas chlororaphis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Contagem de Colônia Microbiana , Fosfotransferases/genética , Fosfotransferases/metabolismo , Folhas de Planta/microbiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Pseudomonas chlororaphis/crescimento & desenvolvimento , Pseudomonas chlororaphis/metabolismo , Sementes/microbiologia , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/metabolismo , Simbiose/fisiologia , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...