Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Environ Sci ; 21(2): 103-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18548848

RESUMO

OBJECTIVE: Pseudomonas aeruginosa is a ubiquitous and opportunistic pathogen that uses the type III secretion system (TTSS) to inject effector proteins directly into the cytosol of target cells to subvert the host cell's functions. Specialized bacterial chaperones are required for effective secretion of some effectors. To identify the chaperone of ExoS, the representative effector secreted by the TTSS of P. aeruginosa, we analyzed the role of a postulated chaperone termed Orf1. METHODS: By allelic exchange, we constructed the mutant with the deletion of gene Orf1. Analysis of secreted and cell-associated fractions was performed by SDS-PAGE and Western blotting. Using strain expressing in trans Orf1, tagged by V5 polypeptide and histidine, protein-protein interaction was determined by affinity resin pull-down assay in combination with MALDI-TOF. The role of Orf1 in the expression of exoS was evaluated by gene reporter analysis. RESULTS: Pull-down assay showed that Orf1 binds to ExoS and ExoT. Secretion profile analysis showed that Orf1 was necessary for the optimal secretion of ExoS and ExoT. However, Orf1 had no effect on the expression of exoS. CONCLUSION: Orf1 is important for the secretion of ExoS probably by maintaining ExoS in a secretion-competent conformation. We propose to name Orf1 as SpcS for "specific Pseudomonas chaperone for ExoS".


Assuntos
ADP Ribose Transferases/metabolismo , Toxinas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Pseudomonas aeruginosa/metabolismo , ADP Ribose Transferases/genética , Toxinas Bacterianas/genética , Sequência de Bases , Western Blotting , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Cinética , Chaperonas Moleculares/genética , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Biotechniques ; 38(1): 63-7, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15679087

RESUMO

The complete genome of the bacterial pathogen Pseudomonas aeruginosa has now been sequenced, allowing gene deletion, one of the most frequently used methods in gene function study, to be fully exploited. In this study, we combine the sacB-based negative selection system with a cre-lox antibiotic marker recycling method. This methodology allows allelic exchange between a target gene and a gentamicin cassette flanked by the two lox sequences. A tetracycline plasmid expressing the cre recombinase is then introduced in the mutant strain to catalyze the excision of the lox-flanked resistance marker. We demonstrate here the efficiency of the combination of these two methods in P. aeruginosa by successively deleting ExoS and ExoT, which are two genetically independent toxins of the type-three secretion system (TTSS). This functional cre-lox recycling antibiotic marker system can create P. aeruginosa strains with multiple mutations without modifying the antibiotic resistance profile when compared to the parental strain.


Assuntos
Deleção de Genes , Marcação de Genes/métodos , Engenharia Genética/métodos , Marcadores Genéticos/genética , Integrases/genética , Pseudomonas aeruginosa/genética , Seleção Genética , Proteínas Virais/genética , Sequência de Bases , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...