Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NAR Genom Bioinform ; 6(2): lqae041, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38774514

RESUMO

Microbial genome sequences are rapidly accumulating, enabling large-scale studies of sequence variation. Existing studies primarily focus on coding regions to study amino acid substitution patterns in proteins. However, non-coding regulatory regions also play a distinct role in determining physiologic responses. To investigate intergenic sequence variation on a large-scale, we identified non-coding regulatory region alleles across 2350 Escherichia coli strains. This 'alleleome' consists of 117 781 unique alleles for 1169 reference regulatory regions (transcribing 1975 genes) at single base-pair resolution. We find that 64% of nucleotide positions are invariant, and variant positions vary in a median of just 0.6% of strains. Additionally, non-coding alleles are sufficient to recover E. coli phylogroups. We find that core promoter elements and transcription factor binding sites are significantly conserved, especially those located upstream of essential or highly-expressed genes. However, variability in conservation of transcription factor binding sites is significant both within and across regulons. Finally, we contrast mutations acquired during adaptive laboratory evolution with wild-type variation, finding that the former preferentially alter positions that the latter conserves. Overall, this analysis elucidates the wealth of information found in E. coli non-coding sequence variation and expands pangenomic studies to non-coding regulatory regions at single-nucleotide resolution.

2.
PLoS Comput Biol ; 20(1): e1011824, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38252668

RESUMO

The transcriptional regulatory network (TRN) of E. coli consists of thousands of interactions between regulators and DNA sequences. Regulons are typically determined either from resource-intensive experimental measurement of functional binding sites, or inferred from analysis of high-throughput gene expression datasets. Recently, independent component analysis (ICA) of RNA-seq compendia has shown to be a powerful method for inferring bacterial regulons. However, it remains unclear to what extent regulons predicted by ICA structure have a biochemical basis in promoter sequences. Here, we address this question by developing machine learning models that predict inferred regulon structures in E. coli based on promoter sequence features. Models were constructed successfully (cross-validation AUROC > = 0.8) for 85% (40/47) of ICA-inferred E. coli regulons. We found that: 1) The presence of a high scoring regulator motif in the promoter region was sufficient to specify regulatory activity in 40% (19/47) of the regulons, 2) Additional features, such as DNA shape and extended motifs that can account for regulator multimeric binding, helped to specify regulon structure for the remaining 60% of regulons (28/47); 3) investigating regulons where initial machine learning models failed revealed new regulator-specific sequence features that improved model accuracy. Finally, we found that strong regulatory binding sequences underlie both the genes shared between ICA-inferred and experimental regulons as well as genes in the E. coli core pan-regulon of Fur. This work demonstrates that the structure of ICA-inferred regulons largely can be understood through the strength of regulator binding sites in promoter regions, reinforcing the utility of top-down inference for regulon discovery.


Assuntos
Escherichia coli , Regulon , Regulon/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Bactérias/genética , Sítios de Ligação/genética , Regiões Promotoras Genéticas/genética , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Bactérias/metabolismo
3.
Cell Rep ; 42(9): 113105, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37713311

RESUMO

Relationships between the genome, transcriptome, and metabolome underlie all evolved phenotypes. However, it has proved difficult to elucidate these relationships because of the high number of variables measured. A recently developed data analytic method for characterizing the transcriptome can simplify interpretation by grouping genes into independently modulated sets (iModulons). Here, we demonstrate how iModulons reveal deep understanding of the effects of causal mutations and metabolic rewiring. We use adaptive laboratory evolution to generate E. coli strains that tolerate high levels of the redox cycling compound paraquat, which produces reactive oxygen species (ROS). We combine resequencing, iModulons, and metabolic models to elucidate six interacting stress-tolerance mechanisms: (1) modification of transport, (2) activation of ROS stress responses, (3) use of ROS-sensitive iron regulation, (4) motility, (5) broad transcriptional reallocation toward growth, and (6) metabolic rewiring to decrease NADH production. This work thus demonstrates the power of iModulon knowledge mapping for evolution analysis.


Assuntos
Escherichia coli , Paraquat , Paraquat/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Escherichia coli/metabolismo , Transcriptoma/genética , Perfilação da Expressão Gênica
4.
Nucleic Acids Res ; 51(19): 10176-10193, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37713610

RESUMO

Transcriptomic data is accumulating rapidly; thus, scalable methods for extracting knowledge from this data are critical. Here, we assembled a top-down expression and regulation knowledge base for Escherichia coli. The expression component is a 1035-sample, high-quality RNA-seq compendium consisting of data generated in our lab using a single experimental protocol. The compendium contains diverse growth conditions, including: 9 media; 39 supplements, including antibiotics; 42 heterologous proteins; and 76 gene knockouts. Using this resource, we elucidated global expression patterns. We used machine learning to extract 201 modules that account for 86% of known regulatory interactions, creating the regulatory component. With these modules, we identified two novel regulons and quantified systems-level regulatory responses. We also integrated 1675 curated, publicly-available transcriptomes into the resource. We demonstrated workflows for analyzing new data against this knowledge base via deconstruction of regulation during aerobic transition. This resource illuminates the E. coli transcriptome at scale and provides a blueprint for top-down transcriptomic analysis of non-model organisms.


Assuntos
Escherichia coli , Bases de Conhecimento , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Transcriptoma
5.
mSystems ; 8(5): e0043723, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37638727

RESUMO

IMPORTANCE: Pseudomonas syringae pv. tomato DC3000 is a model plant pathogen that infects tomatoes and Arabidopsis thaliana. The current understanding of global transcriptional regulation in the pathogen is limited. Here, we applied iModulon analysis to a compendium of RNA-seq data to unravel its transcriptional regulatory network. We characterize each co-regulated gene set, revealing the activity of major regulators across diverse conditions. We provide new insights on the transcriptional dynamics in interactions with the plant immune system and with other bacterial species, such as AlgU-dependent regulation of flagellar genes during plant infection and downregulation of siderophore production in the presence of a siderophore cheater. This study demonstrates the novel application of iModulons in studying temporal dynamics during host-pathogen and microbe-microbe interactions, and reveals specific insights of interest.


Assuntos
Arabidopsis , Microbiota , Pseudomonas syringae/genética , Proteínas de Bactérias/genética , Transcriptoma/genética , Arabidopsis/genética , Aprendizado de Máquina , Sideróforos
6.
mSystems ; 8(3): e0024723, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37278526

RESUMO

Streptococcus pyogenes can cause a wide variety of acute infections throughout the body of its human host. An underlying transcriptional regulatory network (TRN) is responsible for altering the physiological state of the bacterium to adapt to each unique host environment. Consequently, an in-depth understanding of the comprehensive dynamics of the S. pyogenes TRN could inform new therapeutic strategies. Here, we compiled 116 existing high-quality RNA sequencing data sets of invasive S. pyogenes serotype M1 and estimated the TRN structure in a top-down fashion by performing independent component analysis (ICA). The algorithm computed 42 independently modulated sets of genes (iModulons). Four iModulons contained the nga-ifs-slo virulence-related operon, which allowed us to identify carbon sources that control its expression. In particular, dextrin utilization upregulated the nga-ifs-slo operon by activation of two-component regulatory system CovRS-related iModulons, altering bacterial hemolytic activity compared to glucose or maltose utilization. Finally, we show that the iModulon-based TRN structure can be used to simplify the interpretation of noisy bacterial transcriptome data at the infection site. IMPORTANCE S. pyogenes is a pre-eminent human bacterial pathogen that causes a wide variety of acute infections throughout the body of its host. Understanding the comprehensive dynamics of its TRN could inform new therapeutic strategies. Since at least 43 S. pyogenes transcriptional regulators are known, it is often difficult to interpret transcriptomic data from regulon annotations. This study shows the novel ICA-based framework to elucidate the underlying regulatory structure of S. pyogenes allows us to interpret the transcriptome profile using data-driven regulons (iModulons). Additionally, the observations of the iModulon architecture lead us to identify the multiple regulatory inputs governing the expression of a virulence-related operon. The iModulons identified in this study serve as a powerful guidepost to further our understanding of S. pyogenes TRN structure and dynamics.


Assuntos
Streptococcus pyogenes , Toxinas Biológicas , Humanos , Streptococcus pyogenes/genética , Proteínas de Bactérias/genética , Virulência/genética , Toxinas Biológicas/metabolismo , Transcriptoma
7.
Nat Commun ; 13(1): 3682, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760776

RESUMO

The bacterial respiratory electron transport system (ETS) is branched to allow condition-specific modulation of energy metabolism. There is a detailed understanding of the structural and biochemical features of respiratory enzymes; however, a holistic examination of the system and its plasticity is lacking. Here we generate four strains of Escherichia coli harboring unbranched ETS that pump 1, 2, 3, or 4 proton(s) per electron and characterized them using a combination of synergistic methods (adaptive laboratory evolution, multi-omic analyses, and computation of proteome allocation). We report that: (a) all four ETS variants evolve to a similar optimized growth rate, and (b) the laboratory evolutions generate specific rewiring of major energy-generating pathways, coupled to the ETS, to optimize ATP production capability. We thus define an Aero-Type System (ATS), which is a generalization of the aerobic bioenergetics and is a metabolic systems biology description of respiration and its inherent plasticity.


Assuntos
Escherichia coli , Biologia de Sistemas , Transporte de Elétrons/genética , Escherichia coli/metabolismo , Proteoma/metabolismo , Sistema Respiratório
8.
mSphere ; 7(2): e0003322, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35306876

RESUMO

Mycobacterium tuberculosis is one of the most consequential human bacterial pathogens, posing a serious challenge to 21st century medicine. A key feature of its pathogenicity is its ability to adapt its transcriptional response to environmental stresses through its transcriptional regulatory network (TRN). While many studies have sought to characterize specific portions of the M. tuberculosis TRN, and some studies have performed system-level analysis, few have been able to provide a network-based model of the TRN that also provides the relative shifts in transcriptional regulator activity triggered by changing environments. Here, we compiled a compendium of nearly 650 publicly available, high quality M. tuberculosis RNA-sequencing data sets and applied an unsupervised machine learning method to obtain a quantitative, top-down TRN. It consists of 80 independently modulated gene sets known as "iModulons," 41 of which correspond to known regulons. These iModulons explain 61% of the variance in the organism's transcriptional response. We show that iModulons (i) reveal the function of poorly characterized regulons, (ii) describe the transcriptional shifts that occur during environmental changes such as shifting carbon sources, oxidative stress, and infection events, and (iii) identify intrinsic clusters of regulons that link several important metabolic systems, including lipid, cholesterol, and sulfur metabolism. This transcriptome-wide analysis of the M. tuberculosis TRN informs future research on effective ways to study and manipulate its transcriptional regulation and presents a knowledge-enhanced database of all published high-quality RNA-seq data for this organism to date. IMPORTANCE Mycobacterium tuberculosis H37Rv is one of the world's most impactful pathogens, and a large part of the success of the organism relies on the differential expression of its genes to adapt to its environment. The expression of the organism's genes is driven primarily by its transcriptional regulatory network, and most research on the TRN focuses on identifying and quantifying clusters of coregulated genes known as regulons. While previous studies have relied on molecular measurements, in the manuscript we utilized an alternative technique that performs machine learning to a large data set of transcriptomic data. This approach is less reliant on hypotheses about the role of specific regulatory systems and allows for the discovery of new biological findings for already collected data. A better understanding of the structure of the M. tuberculosis TRN will have important implications in the design of improved therapeutic approaches.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Redes Reguladoras de Genes , Humanos , Aprendizado de Máquina , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , RNA-Seq
9.
BMC Bioinformatics ; 22(1): 584, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34879815

RESUMO

BACKGROUND: Independent component analysis is an unsupervised machine learning algorithm that separates a set of mixed signals into a set of statistically independent source signals. Applied to high-quality gene expression datasets, independent component analysis effectively reveals both the source signals of the transcriptome as co-regulated gene sets, and the activity levels of the underlying regulators across diverse experimental conditions. Two major variables that affect the final gene sets are the diversity of the expression profiles contained in the underlying data, and the user-defined number of independent components, or dimensionality, to compute. Availability of high-quality transcriptomic datasets has grown exponentially as high-throughput technologies have advanced; however, optimal dimensionality selection remains an open question. METHODS: We computed independent components across a range of dimensionalities for four gene expression datasets with varying dimensions (both in terms of number of genes and number of samples). We computed the correlation between independent components across different dimensionalities to understand how the overall structure evolves as the number of user-defined components increases. We then measured how well the resulting gene clusters reflected known regulatory mechanisms, and developed a set of metrics to assess the accuracy of the decomposition at a given dimension. RESULTS: We found that over-decomposition results in many independent components dominated by a single gene, whereas under-decomposition results in independent components that poorly capture the known regulatory structure. From these results, we developed a new method, called OptICA, for finding the optimal dimensionality that controls for both over- and under-decomposition. Specifically, OptICA selects the highest dimension that produces a low number of components that are dominated by a single gene. We show that OptICA outperforms two previously proposed methods for selecting the number of independent components across four transcriptomic databases of varying sizes. CONCLUSIONS: OptICA avoids both over-decomposition and under-decomposition of transcriptomic datasets resulting in the best representation of the organism's underlying transcriptional regulatory network.


Assuntos
Redes Reguladoras de Genes , Transcriptoma , Algoritmos , Bases de Dados Factuais , Perfilação da Expressão Gênica
10.
Front Microbiol ; 12: 753521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777307

RESUMO

Dynamic cellular responses to environmental constraints are coordinated by the transcriptional regulatory network (TRN), which modulates gene expression. This network controls most fundamental cellular responses, including metabolism, motility, and stress responses. Here, we apply independent component analysis, an unsupervised machine learning approach, to 95 high-quality Sulfolobus acidocaldarius RNA-seq datasets and extract 45 independently modulated gene sets, or iModulons. Together, these iModulons contain 755 genes (32% of the genes identified on the genome) and explain over 70% of the variance in the expression compendium. We show that five modules represent the effects of known transcriptional regulators, and hypothesize that most of the remaining modules represent the effects of uncharacterized regulators. Further analysis of these gene sets results in: (1) the prediction of a DNA export system composed of five uncharacterized genes, (2) expansion of the LysM regulon, and (3) evidence for an as-yet-undiscovered global regulon. Our approach allows for a mechanistic, systems-level elucidation of an extremophile's responses to biological perturbations, which could inform research on gene-regulator interactions and facilitate regulator discovery in S. acidocaldarius. We also provide the first global TRN for S. acidocaldarius. Collectively, these results provide a roadmap toward regulatory network discovery in archaea.

11.
Nucleic Acids Res ; 48(18): 10157-10163, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32976587

RESUMO

A genome contains the information underlying an organism's form and function. Yet, we lack formal framework to represent and study this information. Here, we introduce the Bitome, a matrix composed of binary digits (bits) representing the genomic positions of genomic features. We form a Bitome for the genome of Escherichia coli K-12 MG1655. We find that: (i) genomic features are encoded unevenly, both spatially and categorically; (ii) coding and intergenic features are recapitulated at high resolution; (iii) adaptive mutations are skewed towards genomic positions with fewer features; and (iv) the Bitome enhances prediction of adaptively mutated and essential genes. The Bitome is a formal representation of a genome and may be used to study its fundamental organizational properties.


Assuntos
Escherichia coli K12/genética , Genoma Bacteriano , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...