Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(4): 2690-2711, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345933

RESUMO

Melanocortin 4 receptor (MC4-R) antagonists are actively sought for treating cancer cachexia. We determined the structures of complexes with PG-934 and SBL-MC-31. These peptides differ from SHU9119 by substituting His6 with Pro6 and inserting Gly10 or Arg10. The structures revealed two subpockets at the TM7-TM1-TM2 domains, separated by N2857.36. Two peptide series based on the complexed peptides led to an antagonist activity and selectivity SAR study. Most ligands retained the SHU9119 potency, but several SBL-MC-31-derived peptides significantly enhanced MC4-R selectivity over MC1-R by 60- to 132-fold. We also investigated MC4-R coupling to the K+ channel, Kir7.1. Some peptides activated the channel, whereas others induced channel closure independently of G protein coupling. In cell culture studies, channel activation correlated with increased feeding, while a peptide with Kir7.1 inhibitory activity reduced eating. These results highlight the potential for targeting the MC4-R:Kir7.1 complex for treating positive and restrictive eating disorders.


Assuntos
Peptídeos , Receptor Tipo 4 de Melanocortina , Humanos , Peptídeos/farmacologia , Ligantes , Desenho de Fármacos , Receptor Tipo 3 de Melanocortina , Receptores de Melanocortina
2.
J Med Chem ; 66(18): 13086-13102, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37703077

RESUMO

Following a rational design, a series of macrocyclic ("stapled") peptidomimetics of 10Panx1, the most established peptide inhibitor of Pannexin1 (Panx1) channels, were developed and synthesized. Two macrocyclic analogues SBL-PX1-42 and SBL-PX1-44 outperformed the linear native peptide. During in vitro adenosine triphosphate (ATP) release and Yo-Pro-1 uptake assays in a Panx1-expressing tumor cell line, both compounds were revealed to be promising bidirectional inhibitors of Panx1 channel function, able to induce a two-fold inhibition, as compared to the native 10Panx1 sequence. The introduction of triazole-based cross-links within the peptide backbones increased helical content and enhanced in vitro proteolytic stability in human plasma (>30-fold longer half-lives, compared to 10Panx1). In adhesion assays, a "double-stapled" peptide, SBL-PX1-206 inhibited ATP release from endothelial cells, thereby efficiently reducing THP-1 monocyte adhesion to a TNF-α-activated endothelial monolayer and making it a promising candidate for future in vivo investigations in animal models of cardiovascular inflammatory disease.


Assuntos
Doenças Cardiovasculares , Conexinas , Animais , Humanos , Conexinas/metabolismo , Células Endoteliais/metabolismo , Linhagem Celular Tumoral , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Trifosfato de Adenosina/metabolismo
3.
Bioorg Chem ; 138: 106612, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37210827

RESUMO

Pannexin1 channels facilitate paracrine communication and are involved in a broad spectrum of diseases. Attempts to find appropriate pannexin1 channel inhibitors that showcase target-selective properties and in vivo applicability remain nonetheless scarce. However, a promising lead candidate, the ten amino acid long peptide mimetic 10Panx1 (H-Trp1-Arg2-Gln3-Ala4-Ala5-Phe6-Val7-Asp8-Ser9-Tyr10-OH), has shown potential as a pannexin1 channel inhibitor in both in vitro and in vivo studies. Nonetheless, structural optimization is critical for clinical use. One of the main hurdles to overcome along the optimization process consists of subduing the low biological stability (10Panx1 t1/2 = 2.27 ± 0.11 min). To tackle this issue, identification of important structural features within the decapeptide structure is warranted. For this reason, a structure-activity relationship study was performed to proteolytically stabilize the sequence. Through an Alanine scan, this study demonstrated that the side chains of Gln3 and Asp8 are crucial for 10Panx1's channel inhibitory capacity. Guided by plasma stability experiments, scissile amide bonds were identified and stabilized, while extracellular adenosine triphosphate release experiments, indicative of pannexin1 channel functionality, allowed to enhance the in vitro inhibitory capacity of 10Panx1.


Assuntos
Fragmentos de Peptídeos , Peptídeos , Sequência de Aminoácidos , Peptídeos/farmacologia , Aminoácidos , Alanina
4.
J Control Release ; 350: 514-524, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35998769

RESUMO

Peptide-based hydrogels represent promising systems for the sustained release of different types of drugs, ranging from small molecules to biologicals. Aiming at subcutaneous injection, which is a desirable parenteral administration route, especially for biologicals, we herein focus on physically crosslinked systems possessing thixotropic behaviour. The purpose of this study was to evaluate the in vitro and in vivo properties of hydrogels based on the amphipathic hexapeptide H-FQFQFK-NH2, which served as the lead sequence. Upon doubling the length of this peptide, the dodecapeptide H-FQFQFKFQFQFK-NH2 gave a significant improvement in terms of in vivo stability of the hydrogel post-injection, as monitored by nuclear SPECT/CT imaging. This increased hydrogel stability also led to a more prolonged in vivo release of encapsulated peptide cargoes. Even though no direct link with the mechanical properties of the hydrogels before injection could be made, an important effect of the subcutaneous medium was noticed on the rheological properties of the hydrogels in post in vivo injection measurements. The results were validated in vivo for a therapeutically relevant analgesic peptide using the hot-plate test as an acute pain model. It was confirmed that elongation of the hydrogelator sequence induced more extended antinociceptive effects. Altogether, this simple structural modification of the hydrogelating peptide could provide a basis for reaching longer durations of action upon use of these soft biomaterials.


Assuntos
Hidrogéis , Peptídeos , Materiais Biocompatíveis/química , Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Hidrogéis/química , Peptídeos/química
5.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628472

RESUMO

Although many efforts have been made to elucidate the pathogenesis of COVID-19, the underlying mechanisms are yet to be fully uncovered. However, it is known that a dysfunctional immune response and the accompanying uncontrollable inflammation lead to troublesome outcomes in COVID-19 patients. Pannexin1 channels are put forward as interesting drug targets for the treatment of COVID-19 due to their key role in inflammation and their link to other viral infections. In the present study, we selected a panel of drugs previously tested in clinical trials as potential candidates for the treatment of COVID-19 early on in the pandemic, including hydroxychloroquine, chloroquine, azithromycin, dexamethasone, ribavirin, remdesivir, favipiravir, lopinavir, and ritonavir. The effect of the drugs on pannexin1 channels was assessed at a functional level by means of measurement of extracellular ATP release. Immunoblot analysis and real-time quantitative reversetranscription polymerase chain reaction analysis were used to study the potential of the drugs to alter pannexin1 protein and mRNA expression levels, respectively. Favipiravir, hydroxychloroquine, lopinavir, and the combination of lopinavir with ritonavir were found to inhibit pannexin1 channel activity without affecting pannexin1 protein or mRNA levels. Thusthree new inhibitors of pannexin1 channels were identified that, though currently not being used anymore for the treatment of COVID-19 patients, could be potential drug candidates for other pannexin1-related diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , Conexinas , Conexinas/genética , Conexinas/metabolismo , Reposicionamento de Medicamentos , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Inflamação , Lopinavir/farmacologia , Lopinavir/uso terapêutico , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro , Ritonavir
6.
J Med Chem ; 64(1): 357-369, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33190475

RESUMO

The melanocortin receptors (MC1R-MC5R) belong to class A G-protein-coupled receptors (GPCRs) and are known to have receptor-specific roles in normal and diseased states. Selectivity for MC4R is of particular interest due to its involvement in various metabolic disorders, including obesity, feeding regulation, and sexual dysfunctions. To further improve the potency and selectivity of MC4R (ant)agonist peptide ligands, we designed and synthesized a series of cyclic peptides based on the recent crystal structure of MC4R in complex with the well-characterized antagonist SHU-9119 (Ac-Nle4-c[Asp5-His6-DNal(2')7-Arg8-Trp9-Lys10]-NH2). These analogues were pharmacologically characterized in vitro, giving key insights into exploiting binding site subpockets to deliver more selective ligands. More specifically, the side chains of the Nle4, DNal(2')7, and Trp9 residues in SHU-9119, as well as the amide linkage between the Asp5 and Lys10 side chains, were found to represent structural features engaging a hMC4R/hMC3R selectivity switch.


Assuntos
Receptor Tipo 4 de Melanocortina/química , Cristalografia por Raios X , Humanos , Ligantes , Estrutura Molecular , Receptor Tipo 4 de Melanocortina/efeitos dos fármacos
7.
J Am Chem Soc ; 139(41): 14668-14675, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28965410

RESUMO

The helix, turn, and ß-strand motifs of biopolymer folded structures have been found to prevail also in non-natural backbones. In contrast, foldamers with aryl rings in their main chains possess distinct conformations that may give access to folded objects beyond the reach of peptidic and nucleotidic backbones. In search of such original architectures, we have explored the effect of bending aromatic amide ß-sheets using building blocks that impart curvature. Cyclic and multiturn noncyclic sequences were synthesized, and their structures were characterized in solution and in the solid state. Stable bent-sheet conformations were shown to prevail in chlorinated solvents. In these structures, folding overcomes intramolecular electrostatic repulsions and forces local dipoles in each layer of the stacked strands to align in a parallel fashion. Sequences having helical segments flanking a central bent aromatic ß-sheet were then synthesized and shown to form well-defined helix-turn-helix architectures in which helical and sheet subcomponents conserve their respective integrity. These objects have a unique basket shape; they possess a cavity the depth and width of which reflects the curvature of the ß-sheet segment. They can be compared to previously described helical closed-shell receptors in which a window has been open, thus providing a means to control guest binding and release pathways and kinetics. As a proof of concept, guest binding to one of the helix-sheet-helix structures is indeed found to be fast on the NMR time scale while it is generally slow in the case of helical capsules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...