Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 82(4): 913-921, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28267879

RESUMO

Milk protein concentrate powder with 85% protein (MPC85) was jet-milled to give 2 particle size distributions (that is, JM-Coarse and JM-Fine) or freeze-dried (FD), in order to improve the functional properties of MPC85 for use in high-protein nutrition (HPN) bars. Volume-weighted mean diameter decreased from 86 µm to 49, 22, and 8 µm in FD, JM-Coarse, and JM-Fine, respectively (P < 0.05). The MPC85 powders modified by jet-milling and freeze-drying were significantly denser than the control MPC85 (P < 0.05). Volume of occluded air in the modified powders decreased (P < 0.05) by an order of magnitude, yet only FD possessed a lower volume of interstitial air (P < 0.05). Particle size reduction and freeze-drying MPC85 decreased its water holding capacity and improved its dispersibility by at least 20%. Contact angle measurements showed that these modifications increased initial hydrophobicity and did not improve wettability. HPN bars made from JM-Fine or FD were firmer by 40 or 17 N, respectively, than the control on day 0 (P < 0.05). HPN bar maximum compressive force increased by 38%, 33%, and 242% after 42 d at 32 °C when formulated with JM-Fine, FD, or control MPC85, respectively. HPN bars prepared with JM-Fine were less crumbly than those formulated with control or FD MPC85. Physically altering the particle structure of MPC85 improved its ability to plasticize within HPN bars and this improved their cohesiveness and textural stability.


Assuntos
Armazenamento de Alimentos , Proteínas do Leite/química , Tamanho da Partícula , Proteínas Alimentares/análise , Análise de Alimentos , Manipulação de Alimentos , Liofilização , Valor Nutritivo , Pós
2.
J Dairy Sci ; 99(8): 6061-6070, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27236767

RESUMO

Transglutaminase (Tgase) crosslinking and calcium reduction were investigated as ways to improve the texture and storage stability of high-protein nutrition (HPN) bars formulated with milk protein concentrate (MPC) and micellar casein concentrate (MCC). The MPC and MCC crosslinked at none, low, and high levels, and a reduced-calcium MPC (RCMPC) were each formulated into model HPN bars. Hardness, crumbliness, moisture content, pH, color, and water activity of the HPN bars were measured during accelerated storage. The HPN bars prepared with MPC were harder and more cohesive than those prepared with MCC. Higher levels of Tgase crosslinking improved HPN bar cohesiveness and decreased hardening during storage. The RCMPC produced softer, yet crumblier HPN bars. Small textural differences were observed for the HPN bars formulated with the transglutaminase crosslinked proteins or RCMPC when compared with their respective controls. However, modification only slightly improved protein ingredient ability to slow hardening while balancing cohesion and likely requires further improvement for increased applicability in soft-texture HPN bars.


Assuntos
Cálcio/química , Qualidade dos Alimentos , Proteínas do Leite/química , Animais , Cálcio da Dieta , Caseínas/química , Dureza , Micelas , Leite/química , Proteínas do Leite/metabolismo
3.
J Food Sci ; 81(5): S1254-62, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27037608

RESUMO

Previous instrumental study of high-protein nutrition (HPN) bars formulated with extruded milk protein concentrate (MPC) indicated slower hardening compared to bars formulated with unmodified MPC. However, hardness, and its change during storage, insufficiently characterizes HPN bar texture. In this study, MPC80 was extruded at 2 different conditions and model HPN bars were prepared. A trained sensory panel and instrumental techniques were used to measure HPN bar firmness, crumbliness, fracturability, hardness, cohesiveness, and other attributes to characterize texture change during storage. Extrusion modification, storage temperature, and storage time significantly affected the instrumental and sensory panel measured texture attributes. The HPN bars became firmer and less cohesive during storage. When evaluated at the same storage conditions, the texture attributes of the HPN bars formulated with the different extrudates did not differ significantly from each other. However, textural differences were noted most of the time between the control and the HPN bars formulated with extruded MPC80. An adapted HPN bar crumbliness measurement technique produced results that were correlated with sensory panel measured crumbliness (r = 0.85) and cohesiveness (r = -0.84). Overall, the HPN bars formulated with extruded MPC80 were significantly softer, less crumbly, and more cohesive than the control during storage.


Assuntos
Manipulação de Alimentos/métodos , Alimento Funcional/análise , Dureza , Proteínas do Leite , Qualidade dos Alimentos , Humanos , Temperatura
4.
J Food Sci ; 81(2): C332-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26748454

RESUMO

Milk protein concentrates with more than 80% protein (that is, MPC80) are underutilized as the primary protein source in high-protein nutrition bars as they impart crumbliness and cause hardening during storage. High-protein nutrition bar texture changes are often associated with internal protein aggregations and macronutrient phase separation. These changes were investigated in model high-protein nutrition bars formulated with MPC80 and physically modified MPC80s. High-protein nutrition bars formulated with extruded MPC80s hardened slower than those formulated with toasted or unmodified MPC80. Extruded MPC80 had reduced free sulfhydryl group exposure, whereas measurable increases were seen in the toasted MPC80. High-protein nutrition bar textural performance may be related to the number of exposed free sulfhydryl groups in MPC80. Protein aggregations resulting from ingredient modification and high-protein nutrition bar storage were studied with sodium dodecyl sulfate polyacrylamide gel electrophoresis. Disulfide-based protein aggregations and changes in free sulfhydryl concentration were not consistently relatable to high-protein nutrition bar texture change. However, the high-protein nutrition bars formulated with extruded MPC80 were less prone to phase separations, as depicted by confocal laser scanning microscopy, and underwent less texture change during storage than those formulated with toasted or unmodified MPC80.


Assuntos
Dieta , Análise de Alimentos , Manipulação de Alimentos/métodos , Proteínas do Leite/química , Eletroforese em Gel de Poliacrilamida , Humanos , Estado Nutricional , Compostos de Sulfidrila/química
5.
Enzyme Microb Technol ; 55: 31-9, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24411443

RESUMO

Two biosurfactants, surfactin and fatty acyl-glutamate, were produced from genetically-modified strains of Bacillus subtilis on 2% glucose and mineral salts media in shake-flasks and bioreactors. Biosurfactant synthesis ceased when the main carbohydrate source was completely depleted. Surfactin titers were ∼30-fold higher than fatty acyl-glutamate in the same medium. When bacteria were grown in large aerated bioreactors, biosurfactants mostly partitioned to the foam fraction, which was recovered. Dispersion effectiveness of surfactin and fatty acyl-glutamate was evaluated by measuring the critical micelle concentration (CMC) and dispersant-to-oil ratio (DOR). The CMC values for surfactin and fatty acyl-glutamate in double deionized distilled water were 0.015 and 0.10 g/L, respectively. However, CMC values were higher, 0.02 and 0.4 g/L for surfactin and fatty acyl-glutamate, respectively, in 12 parts per thousand Instant Ocean®[corrected].sea salt, which has been partly attributed to saline-induced conformational changes in the solvated ionic species of the biosurfactants. The DORs for surfactin and fatty acyl-glutamate were 1:96 and 1:12, respectively, in water. In Instant Ocean® solutions containing 12 ppt sea salt, these decreased to 1:30 and 1:4, respectively, suggesting reduction in oil dispersing efficiency of both surfactants in saline. Surfactant toxicities were assessed using the Gulf killifish, Fundulus grandis, which is common in estuarine habitats of the Gulf of Mexico. Surfactin was 10-fold more toxic than fatty acyl-glutamate. A commercial surfactant, sodium laurel sulfate, had intermediate toxicity. Raising the salinity from 5 to 25 ppt increased the toxicity of all three surfactants; however, the increase was the lowest for fatty acyl-glutamate.


Assuntos
Glutamatos/isolamento & purificação , Lipopeptídeos/isolamento & purificação , Peptídeos Cíclicos/isolamento & purificação , Poluição por Petróleo , Tensoativos/isolamento & purificação , Poluentes Químicos da Água , Animais , Bacillus subtilis/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Fermentação , Fundulidae/crescimento & desenvolvimento , Glutamatos/biossíntese , Glutamatos/farmacologia , Glutamatos/toxicidade , Larva/efeitos dos fármacos , Lipopeptídeos/biossíntese , Lipopeptídeos/farmacologia , Lipopeptídeos/toxicidade , Micelas , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/toxicidade , Salinidade , Tensão Superficial , Tensoativos/metabolismo , Tensoativos/farmacologia , Tensoativos/toxicidade
6.
J Food Sci ; 78(6): E861-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23601000

RESUMO

Important functional properties of milk protein concentrate with 80% protein (MPC80), modified with low- and high-shear extrusion, or low-temperature toasting were compared. The effect of high- and low-shear profile screws in a corotating twin-screw extruder, and 4 different ramped temperature profiles with die temperatures of 65, 75, 90, and 120 °C were compared. Extrudates were pelletized, dried, and ground to a fine powder. Toasting was done at 75 and 110 °C for 4 h for milk protein modification. Extruded and toasted MPC80 had reduced protein solubility and surface hydrophobicity. Extrusion decreased water-holding capacity (WHC). Toasted MPC80 had increased WHC when treated at 75 °C, but WHC decreased when heated at 110 °C. The treatments had no strong influence on gel strength. Reduced and nonreduced sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed peptide structural changes that occurred due to processing, especially for whey proteins. Results are discussed in terms of potential for application of extruded or toasted MPC80 in high-protein nutrition bar applications.


Assuntos
Manipulação de Alimentos/métodos , Proteínas do Leite/química , Laticínios/análise , Eletroforese em Gel de Poliacrilamida , Géis/química , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Modelos Lineares , Pós/química , Solubilidade , Propriedades de Superfície , Água/análise
7.
Bioprocess Biosyst Eng ; 36(6): 687-94, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23377261

RESUMO

Front-end protein recovery from biomass at different maturities, and its effects on chemical pretreatment and enzyme hydrolysis of partially deproteinized fiber were investigated. The protein recovery from alfalfa and switchgrass biomass using sodium dodecyl sulfate and potassium hydroxide treatments was ~50-65 % of initial biomass protein. When hot water was used as extraction media, the protein recovery was 52.9 and 43.7 % of total protein in switchgrass and alfalfa, respectively. For any treatment, relative protein recovery was higher from switchgrass than from alfalfa. Only approximately half the total protein was recovered from relatively mature (early fall) biomass compared with midsummer harvested biomass. When protein was recovered partially using sodium dodecyl sulfate or potassium hydroxide, and leftover fiber pretreated, aqueous ammonia pretreatment removed 58.5-60.1 % of lignin and retained more cellulose in the fiber compared with acid pretreatment (nearly no lignin removal). Protein removal was helpful in the enzyme digestibility of fibers. Delignification of ammonia pretreated partially deproteinized alfalfa fiber was in the range of 34.4-45 %, while dilute sulfuric acid did not remove lignin effectively. Overall, the higher delignification and enzyme digestibilities were observed in aqueous ammonia pretreated partially deproteinized alfalfa fibers regardless of biomass type.


Assuntos
Amônia/química , Biomassa , Lignina/química , Medicago sativa/química , Proteínas de Plantas/química , Hidrólise
8.
Bioresour Technol ; 102(12): 6680-6, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21511468

RESUMO

Two corn preparation methods, rollermill flaking and hammermill grinding, were compared for efficient processing of corn into ethanol by granular starch hydrolysis and simultaneous fermentation by yeast Saccharomyces cerevisiae. Corn was either ground in a hammermill with different size screens or crushed in a smooth-surfaced rollermill at different roller gap settings. The partitioning of beer solids and size distribution of solids in the thin stillage were compared. The mean particle diameter d(50) for preparations varied with set-ups and ranged between 210 and 340 µm for ground corn, and 1180-1267 µm for flaked corn. The ethanol concentrations in beer were similar (18-19% v/v) for ground and flaked preparations, however, ethanol productivity increased with reduced particle size. Roller versus hammermilling of corn reduced solids in thin stillage by 28%, and doubled the volume percent of fines (d(50) ∼ 7 µm)in thin stillage and decreased coarse (d(50) ∼ 122 µm) by half compared to hammermilling.


Assuntos
Biocombustíveis , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Amido/metabolismo , Zea mays/metabolismo , Fermentação , Hidrólise , Modelos Lineares , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA