Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Nat Med ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760585

RESUMO

Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes.

2.
Neuro Oncol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695575

RESUMO

Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and the rising availability of neuroimaging. While most exhibit non-malignant behaviour, a subset of meningiomas are biologically aggressive and lead to significant neurological morbidity and mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official WHO (cIMPACT-NOW) working group. There also remains clinical equipoise on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas (ICOM) including field-leading experts, have prepared a comprehensive consensus narrative review directed towards clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality of life studies, and management strategies for unique meningioma patient populations. In each section we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.

3.
Neuro Oncol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567448

RESUMO

BACKGROUND: Extracellular vesicles (EVs) obtained by noninvasive liquid biopsy from patient blood can serve as biomarkers. Here, we investigated the potential of circulating plasma EVs to serve as an indicator in the diagnosis, prognosis and treatment response of glioblastoma patients. METHODS: Plasma samples were collected from glioblastoma patients at multiple timepoints before and after surgery. EV concentrations were measured by nanoparticle tracking analysis and imaging flow cytometry. Tumor burden and edema were quantified by 3D reconstruction. EVs and tumors were further monitored in glioma-bearing mice. RESULTS: Glioblastoma patients displayed a 5.5-fold increase in circulating EVs compared to healthy donors (p < 0.0001). Patients with higher EV levels had a significantly shorter overall survival and progression-free survival than patients with lower levels, and the plasma EV concentration was an independent prognostic parameter for overall survival. EV levels correlated with the extent of peritumoral FLAIR hyperintensity but not with the size of the contrast-enhancing tumor, and similar findings were obtained in mice. Postoperatively, EV concentrations decreased rapidly back to normal levels, and the magnitude of the decline was associated with the extent of tumor resection. EV levels remained low during stable disease, but increased again upon tumor recurrence. In some patients, EV resurgence preceded the magnetic resonance imaging (MRI) detectability of tumor relapse. CONCLUSIONS: Our findings suggest that leakiness of the blood-brain barrier may primarily be responsible for the high circulating EV concentrations in glioblastoma patients. Elevated EVs reflect tumor presence, and their quantification may thus be valuable in assessing disease activity.

4.
Hamostaseologie ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636546

RESUMO

Patients with glioblastoma (GBM) are at increased risk for arterial and venous thromboembolism (TE). Risk factors include surgery, the use of corticosteroids, radiation, and chemotherapy, but also prothrombotic characteristics of the tumor itself such as expression of tissue factor, vascular endothelial growth factor, or podoplanin. Although distant metastases are extremely rare in this tumor entity, circulating tumor cells (CTCs) have been detected in a significant proportion of GBM patients, potentially linking local tumor growth characteristics to systemic hypercoagulability. We performed post hoc analysis of a study, in which GBM patients had been investigated for CTCs. Information on TE was retrieved from electronic patient charts. In total, 133 patients (median age, 63 years; interquartile range, 53-70 years) were analyzed. During follow-up, TE was documented in 14 patients (11%), including 8 venous and 6 arterial events. CTCs were detected in 26 patients (20%). Four (15%) patients with CTCs had a TE compared with 10 (9%) patients without CTCs. There was no difference in the frequency of TE events between patients with and those without detectable CTCs (p = 0.58). In summary, although our study confirms a high risk of TE in GBM patients, it does not point to an obvious association between CTCs and vascular thrombosis.

5.
Clin Transl Immunology ; 13(2): e1487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304555

RESUMO

Objectives: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Although an acute SARS-CoV-2 infection mainly presents with respiratory illness, neurologic symptoms and sequelae are increasingly recognised in the long-term treatment of COVID-19 patients. The pathophysiology and the neuropathogenesis behind neurologic complications of COVID-19 remain poorly understood, but mounting evidence points to endothelial dysfunction either directly caused by viral infection or indirectly by inflammatory cytokines, followed by a local immune response that may include virus-specific T cells. However, the type and role of central nervous system-infiltrating T cells in COVID-19 are complex and not fully understood. Methods: We analysed distinct anatomical brain regions of patients who had deceased as a result of COVID-19-associated pneumonia or complications thereof and performed T cell receptor Vß repertoire sequencing. Clonotypes were analysed for SARS-CoV-2 association using public TCR repertoire data. Results: Our descriptive study demonstrates that SARS-CoV-2-associated T cells are found in almost all brain areas of patients with fatal COVID-19 courses. The olfactory bulb, medulla and cerebellum were brain regions showing the most SARS-CoV-2 specific sequence patterns. Neuropathological workup demonstrated primary CD8+ T-cell infiltration with a perivascular infiltration pattern. Conclusion: Future research is needed to better define the relationship between T-cell infiltration and neurological symptoms and its long-term impact on patients' cognitive and mental health.

6.
Acta Neuropathol Commun ; 12(1): 9, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229158

RESUMO

DNA methylation analysis has become a powerful tool in neuropathology. Although DNA methylation-based classification usually shows high accuracy, certain samples cannot be classified and remain clinically challenging. We aimed to gain insight into these cases from a clinical perspective. To address, central nervous system (CNS) tumors were subjected to DNA methylation profiling and classified according to their calibrated score using the DKFZ brain tumor classifier (V11.4) as "≥ 0.84" (score ≥ 0.84), "0.3-0.84" (score 0.3-0.84), or "< 0.3" (score < 0.3). Histopathology, patient characteristics, DNA input amount, and tumor purity were correlated. Clinical outcome parameters were time to treatment decision, progression-free, and overall survival. In 1481 patients, the classifier identified 69 (4.6%) tumors with an unreliable score as "< 0.3". Younger age (P < 0.01) and lower tumor purity (P < 0.01) compromised accurate classification. A clinical impact was demonstrated as unclassifiable cases ("< 0.3") had a longer time to treatment decision (P < 0.0001). In a subset of glioblastomas, these cases experienced an increased time to adjuvant treatment start (P < 0.001) and unfavorable survival (P < 0.025). Although DNA methylation profiling adds an important contribution to CNS tumor diagnostics, clinicians should be aware of a potentially longer time to treatment initiation, especially in malignant brain tumors.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Humanos , Metilação de DNA , Prognóstico , Estudos Retrospectivos , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia
7.
Acta Neuropathol ; 147(1): 21, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38244080

RESUMO

The longitudinal transition of phenotypes is pivotal in glioblastoma treatment resistance and DNA methylation emerged as an important tool for classifying glioblastoma phenotypes. We aimed to characterize DNA methylation subclass heterogeneity during progression and assess its clinical impact. Matched tissues from 47 glioblastoma patients were subjected to DNA methylation profiling, including CpG-site alterations, tissue and serum deconvolution, mass spectrometry, and immunoassay. Effects of clinical characteristics on temporal changes and outcomes were studied. Among 47 patients, 8 (17.0%) had non-matching classifications at recurrence. In the remaining 39 cases, 28.2% showed dominant DNA methylation subclass transitions, with 72.7% being a mesenchymal subclass. In general, glioblastomas with a subclass transition showed upregulated metabolic processes. Newly diagnosed glioblastomas with mesenchymal transition displayed increased stem cell-like states and decreased immune components at diagnosis and exhibited elevated immune signatures and cytokine levels in serum. In contrast, tissue of recurrent glioblastomas with mesenchymal transition showed increased immune components but decreased stem cell-like states. Survival analyses revealed comparable outcomes for patients with and without subclass transitions. This study demonstrates a temporal heterogeneity of DNA methylation subclasses in 28.2% of glioblastomas, not impacting patient survival. Changes in cell state composition associated with subclass transition may be crucial for recurrent glioblastoma targeted therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Metilação de DNA , Recidiva Local de Neoplasia/genética , Análise de Sobrevida
8.
Acta Neuropathol ; 147(1): 22, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265489

RESUMO

Ependymomas encompass multiple clinically relevant tumor types based on localization and molecular profiles. Tumors of the methylation class "spinal ependymoma" (SP-EPN) represent the most common intramedullary neoplasms in children and adults. However, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical relevance have been described in a large, epigenetically defined series. Transcriptomic (n = 72), epigenetic (n = 225), genetic (n = 134), and clinical data (n = 112) were integrated for a detailed molecular overview on SP-EPN. Additionally, we mapped SP-EPN transcriptomes to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. The integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord revealed that SP-EPN display the highest similarities to mature adult ependymal cells. Unsupervised hierarchical clustering of transcriptomic data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype A tumors primarily carried previously known germline or sporadic NF2 mutations together with 22q loss (bi-allelic NF2 loss), resulting in decreased NF2 expression. Furthermore, they more often presented as multilocular disease and demonstrated a significantly reduced progression-free survival as compared to SP-EP subtype B. In contrast, subtype B predominantly contained samples without NF2 mutation detected in sequencing together with 22q loss (monoallelic NF2 loss). These tumors showed regular NF2 expression but more extensive global copy number alterations. Based on integrated molecular profiling of a large multi-center cohort, we identified two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.


Assuntos
Ependimoma , Neoplasias da Medula Espinal , Adulto , Criança , Humanos , Transcriptoma , Perfilação da Expressão Gênica , Mutação , Epigênese Genética
9.
Cancers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958423

RESUMO

Glioblastoma is the most common primary brain cancer in adults and represents one of the worst cancer diagnoses for patients. Suffering from a poor prognosis and limited treatment options, tumor recurrences are virtually inevitable. Additionally, treatment resistance is very common for this disease and worsens the prognosis. These and other factors are hypothesized to be largely due to the fact that glioblastoma cells are known to be able to obtain stem-like traits, thereby driving these phenotypes. Recently, we have shown that the in vitro and ex vivo treatment of glioblastoma stem-like cells with the hormonally active form of vitamin D3, calcitriol (1α,25(OH)2-vitamin D3) can block stemness in a subset of cell lines and reduce tumor growth. Here, we expanded our cell panel to over 40 different cultures and can show that, while half of the tested cell lines are sensitive, a quarter can be classified as high responders. Using genetic and proteomic analysis, we further determined that treatment success can be partially explained by specific polymorphism of the vitamin D3 receptor and that high responders display a proteome suggestive of blockade of stemness, as well as migratory potential.

10.
Mol Pharm ; 20(10): 4994-5005, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37733943

RESUMO

Rhizochalinin (Rhiz) is a recently discovered cytotoxic sphingolipid synthesized from the marine natural compound rhizochalin. Previously, Rhiz demonstrated high in vitro and in vivo efficacy in various cancer models. Here, we report Rhiz to be highly active in human glioblastoma cell lines as well as in patient-derived glioma-stem like neurosphere models. Rhiz counteracted glioblastoma cell proliferation by inducing apoptosis, G2/M-phase cell cycle arrest, and inhibition of autophagy. Proteomic profiling followed by bioinformatic analysis suggested suppression of the Akt pathway as one of the major biological effects of Rhiz. Suppression of Akt as well as IGF-1R and MEK1/2 kinase was confirmed in Rhiz-treated GBM cells. In addition, Rhiz pretreatment resulted in a more pronounced inhibitory effect of γ-irradiation on the growth of patient-derived glioma-spheres, an effect to which the Akt inhibition may also contribute decisively. In contrast, EGFR upregulation, observed in all GBM neurospheres under Rhiz treatment, was postulated to be a possible sign of incipient resistance. In line with this, combinational therapy with EGFR-targeted tyrosine kinase inhibitors synergistically increased the efficacy of Rhiz resulting in dramatic inhibition of GBM cell viability as well as a significant reduction of neurosphere size in the case of combination with lapatinib. Preliminary in vitro data generated using a parallel artificial membrane permeability (PAMPA) assay suggested that Rhiz cannot cross the blood brain barrier and therefore alternative drug delivery methods should be used in the further in vivo studies. In conclusion, Rhiz is a promising new candidate for the treatment of human glioblastoma, which should be further developed in combination with EGFR inhibitors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteômica , Apoptose , Proliferação de Células , Receptores ErbB , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico
11.
Neurooncol Pract ; 10(5): 462-471, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37720395

RESUMO

Background: 5-aminolevulinic acid (5-ALA) fluorescence-guided resection increases the percentage of complete CNS tumor resections and improves the progression-free survival of IDH-wildtype glioblastoma patients. A small subset of IDH-wildtype glioblastoma shows no 5-ALA fluorescence. An explanation for these cases is missing. In this study, we used DNA methylation profiling to further characterize non-fluorescent glioblastomas. Methods: Patients with newly diagnosed and recurrent IDH-wildtype glioblastoma that underwent surgery were analyzed. The intensity of intraoperative 5-ALA fluorescence was categorized as non-visible or visible. DNA was extracted from tumors and genome-wide DNA methylation patterns were analyzed using Illumina EPIC (850k) arrays. Furthermore, 5-ALA intensity was measured by flow cytometry on human gliomasphere lines (BT112 and BT145). Results: Of 74 included patients, 12 (16.2%) patients had a non-fluorescent glioblastoma, which were compared to 62 glioblastomas with 5-ALA fluorescence. Clinical characteristics were equally distributed between both groups. We did not find significant differences between DNA methylation subclasses and 5-ALA fluorescence (P = .24). The distribution of cells of the tumor microenvironment was not significantly different between the non-fluorescent and fluorescent tumors. Copy number variations in EGFR and simultaneous EGFRvIII expression were strongly associated with 5-ALA fluorescence since all non-fluorescent glioblastomas were EGFR-amplified (P < .01). This finding was also demonstrated in recurrent tumors. Similarly, EGFR-amplified glioblastoma cell lines showed no 5-ALA fluorescence after 24 h of incubation. Conclusions: Our study demonstrates an association between non-fluorescent IDH-wildtype glioblastomas and EGFR gene amplification which should be taken into consideration for recurrent surgery and future studies investigating EGFR-amplified gliomas.

12.
bioRxiv ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609137

RESUMO

Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is nascent. We present an epigenetically defined neural signature of glioblastoma that independently affects patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals high abundance of stem cell-like malignant cells classified as oligodendrocyte precursor and neural precursor cell-like in high-neural glioblastoma. High-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature associates with decreased survival as well as increased functional connectivity and can be detected via DNA analytes and brain-derived neurotrophic factor in plasma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant.

13.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511168

RESUMO

The CRISPR/Cas system has a broad range of possible medical applications, but its clinical translation has been hampered, particularly by the lack of safe and efficient vector systems mediating the short-term expression of its components. Recently, different virus-like particles (VLPs) have been introduced as promising vectors for the delivery of CRISPR/Cas genome editing components. Here, we characterized and directly compared three different types of retrovirus-based (R) VLPs, two derived from the γ-retrovirus murine leukemia virus (gRVLPs and "enhanced" egRVLPs) and one from the lentivirus human immunodeficiency virus, HIV (LVLPs). First, we unified and optimized the production of the different RVLPs. To ensure maximal comparability of the produced RVLPs, we adapted several assays, including nanoparticle tracking analysis (NTA), multi-parametric imaging flow cytometry (IFC), and Cas9-ELISA, to analyze their morphology, surface composition, size, and concentration. Next, we comparatively tested the three RVLPs targeting different genes in 293T model cells. Using identical gRNAs, we found egRVLPs to mediate the most efficient editing. Functional analyses indicated better cargo (i.e., Cas9) transfer and/or release as the underlying reason for their superior performance. Finally, we compared on- and off-target activities of the three RVLPs in human-induced pluripotent stem cells (hiPSC) exploiting the clinically relevant C-C motif chemokine receptor 5 (CCR5) as the target. Again, egRVLPs facilitated the highest, almost 100% knockout rates, importantly with minimal off-target activity. In conclusion, in direct comparison, egRVLPs were the most efficient RVLPs. Moreover, we established methods for in-depth characterization of VLPs, facilitating their validation and thus more predictable and safe application.


Assuntos
Sistemas CRISPR-Cas , Nanopartículas , Camundongos , Animais , Humanos , Sistemas CRISPR-Cas/genética , Retroviridae/genética , Edição de Genes/métodos , Lentivirus/genética
14.
Cells ; 12(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37443804

RESUMO

Glioblastoma (GBM) is a highly aggressive primary brain tumor that is largely refractory to treatment and, therefore, invariably relapses. GBM patients have a median overall survival of 15 months and, given this devastating prognosis, there is a high need for therapy improvement. One of the therapeutic approaches currently tested in GBM is chimeric antigen receptor (CAR)-T cell therapy. CAR-T cells are genetically altered T cells that are redirected to eliminate tumor cells in a highly specific manner. There are several challenges to CAR-T cell therapy in solid tumors such as GBM, including restricted trafficking and penetration of tumor tissue, a highly immunosuppressive tumor microenvironment (TME), as well as heterogeneous antigen expression and antigen loss. In addition, CAR-T cells have limitations concerning safety, toxicity, and the manufacturing process. To date, CAR-T cells directed against several target antigens in GBM including interleukin-13 receptor alpha 2 (IL-13Rα2), epidermal growth factor receptor variant III (EGFRvIII), human epidermal growth factor receptor 2 (HER2), and ephrin type-A receptor 2 (EphA2) have been tested in preclinical and clinical studies. These studies demonstrated that CAR-T cell therapy is a feasible option in GBM with at least transient responses and acceptable adverse effects. Further improvements in CAR-T cells regarding their efficacy, flexibility, and safety could render them a promising therapy option in GBM.


Assuntos
Glioblastoma , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Glioblastoma/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Recidiva Local de Neoplasia/metabolismo , Linfócitos T , Microambiente Tumoral
15.
J Hematol Oncol ; 16(1): 23, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932441

RESUMO

BACKGROUND: The immunological composition of the tumor microenvironment has a decisive influence on the biological course of cancer and is therefore of profound clinical relevance. In this study, we analyzed the cooperative effects of integrin ß4 (ITGB4) on tumor cells and E-/P-selectin on endothelial cells within the tumor stroma for regulating tumor growth by shaping the local and systemic immune environment. METHODS: We used several preclinical mouse models for different solid human cancer types (xenograft and syngeneic) to explore the role of ITGB4 (shRNA-mediated knockdown in tumor cells) and E-/P-selectins (knockout in mice) for tumor growth; effects on apoptosis, proliferation and intratumoral signaling pathways were determined by histological and biochemical methods and 3D in vitro experiments; changes in the intratumoral and systemic immune cell composition were determined by flow cytometry and immunohistochemistry; chemokine levels and their attracting potential were measured by ELISA and 3D invasion assays. RESULTS: We observed a very robust synergism between ITGB4 and E-/P-selectin for the regulation of tumor growth, accompanied by an increased recruitment of CD11b+ Gr-1Hi cells with low granularity (i.e., myeloid-derived suppressor cells, MDSCs) specifically into ITGB4-depleted tumors. ITGB4-depleted tumors undergo apoptosis and actively attract MDSCs, well-known to promote tumor growth in several cancers, via increased secretion of different chemokines. MDSC trafficking into tumors crucially depends on E-/P-selectin expression. Analyses of clinical samples confirmed an inverse relationship between ITGB4 expression in tumors and number of tumor-infiltrating leukocytes. CONCLUSIONS: These findings suggest a distinct vulnerability of ITGB4Lo tumors for MDSC-directed immunotherapies.


Assuntos
Integrina beta4 , Células Supressoras Mieloides , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Quimiocinas , Células Endoteliais/metabolismo , Integrina beta4/metabolismo , Selectina-P , Microambiente Tumoral
16.
Neuro Oncol ; 25(2): 315-325, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35868257

RESUMO

BACKGROUND: DNA methylation-based tumor classification allows an enhanced distinction into subgroups of glioblastoma. However, the clinical benefit of DNA methylation-based stratification of glioblastomas remains inconclusive. METHODS: Multicentric cohort study including 430 patients with newly diagnosed glioblastoma subjected to global DNA methylation profiling. Outcome measures included overall survival (OS), progression-free survival (PFS), prognostic relevance of EOR and MGMT promoter methylation status as well as a surgical benefit for recurrent glioblastoma. RESULTS: 345 patients (80.2%) fulfilled the inclusion criteria and 305 patients received combined adjuvant therapy. DNA methylation subclasses RTK I, RTK II, and mesenchymal (MES) revealed no significant survival differences (RTK I: Ref.; RTK II: HR 0.9 [95% CI, 0.64-1.28]; p = 0.56; MES: 0.69 [0.47-1.02]; p = 0.06). Patients with RTK I (GTR/near GTR: Ref.; PR: HR 2.87 [95% CI, 1.36-6.08]; p < 0.01) or RTK II (GTR/near GTR: Ref.; PR: HR 5.09 [95% CI, 2.80-9.26]; p < 0.01) tumors who underwent gross-total resection (GTR) or near GTR had a longer OS and PFS than partially resected patients. The MES subclass showed no survival benefit for a maximized EOR (GTR/near GTR: Ref.; PR: HR 1.45 [95% CI, 0.68-3.09]; p = 0.33). Therapy response predictive value of MGMT promoter methylation was evident for RTK I (HR 0.37 [95% CI, 0.19-0.71]; p < 0.01) and RTK II (HR 0.56 [95% CI, 0.34-0.91]; p = 0.02) but not the MES subclass (HR 0.52 [95% CI, 0.27-1.02]; p = 0.06). For local recurrence (n = 112), re-resection conveyed a progression-to-overall survival (POS) benefit (p < 0.01), which was evident in RTK I (p = 0.03) and RTK II (p < 0.01) tumors, but not in MES tumors (p = 0.33). CONCLUSION: We demonstrate a survival benefit from maximized EOR for newly diagnosed and recurrent glioblastomas of the RTK I and RTK II but not the MES subclass. Hence, it needs to be debated whether the MES subclass should be treated with maximal surgical resection, especially when located in eloquent areas and at time of recurrence.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/cirurgia , Glioblastoma/tratamento farmacológico , Estudos de Coortes , Metilação de DNA , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Prognóstico , Estudos Retrospectivos
17.
Neurooncol Adv ; 4(Suppl 2): ii45-ii52, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36380859

RESUMO

For many tumor entities, tumor biology and response to therapy are reflected by components that can be detected and captured in the blood stream. The so called "liquid biopsy" has been stratified over time into the analysis of circulating tumor cells (CTC), extracellular vesicles (EVs), and free circulating components such as cell-free nucleic acids or proteins. In neuro-oncology, two distinct areas need to be distinguished, intrinsic brain tumors and tumors metastatic to the brain. For intrinsic brain tumors, specifically glioblastoma, CTCs although present in low abundance, contain highly relevant, yet likely incomplete biological information for the whole tumor. For brain metastases, CTCs can have clinical relevance for patients especially with oligometastatic disease and brain metastasis in cancers like breast and lung cancer. EVs shed from the tumor cells and the tumor environment provide complementary information. Sensitive technologies have become available that are able to detect both, CTCs and EVs in the peripheral blood of patients with intrinsic and metastatic brain tumors despite the blood brain barrier. In reference to glioblastoma EVs, being shed by tumor cells and microenvironment and being more diffusible than CTCs may yield a more complete reflection of the whole tumor compared to low-abundance CTCs representing only a fraction of the multiclonal tumor heterogeneity. We here review the emerging aspects of CTCs and EVs as liquid biopsy biomarkers in neuro-oncology.

18.
Front Oncol ; 12: 951805, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338751

RESUMO

Non-small cell lung cancer (NSCLC) is currently the leading cause of cancer-related death worldwide, and the incidence of brain metastases (BM) in NSCLC patients is continuously increasing. The recent improvements of systemic treatment in NSCLC necessitate continuous updates on prognostic subgroups and factors determining overall survival (OS). In order to improve clinical decision-making in tumor boards, we investigated the clinical determinants affecting survival in patients with resectable NSCLC BM. A retrospective analysis was conducted of NSCLC patients with surgically resectable BM treated in our institution between 01/2015 and 12/2020. The relevant clinical factors affecting survival identified by univariate analysis were included in a multivariate logistic regression model. Overall, 264 patients were identified, with a mean age of 62.39 ± 9.98 years at the initial diagnosis of NSCLC BM and OS of 23.22 ± 1.71 months. The factors that significantly affected OS from the time of primary tumor diagnosis included the systemic metastatic load (median: 28.40 ± 4.82 vs. 40.93 ± 11.18 months, p = 0.021) as well as a number of BM <2 (median: 17.20 ± 2.52 vs. 32.53 ± 3.35 months, p = 0.014). When adjusted for survival time after neurosurgical intervention, a significant survival benefit was found in patients <60 years (median 16.13 ± 3.85 vs. 9.20 ± 1.39 months, p = 0.011) and, among others, patients without any concurrent systemic metastases at time of NSCLC BM diagnosis. Our data shows that the number of BM (singular/solitary), the Karnofsky Performance Status, gender, and age but not localization (infra-/supratentorial), mass-edema index or time to BM occurrence impact OS, and postsurgical survival in NSCLC BM patients. Additionally, our study shows that patients in prognostically favorable clinical subgroups an OS, which differs significantly from current statements in literature. The described clinically relevant factors may improve the understanding of the risks and the course of this disease and Faid future clinical decision making in tumor boards.

20.
Cancer Cell ; 40(6): 639-655.e13, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35700707

RESUMO

Glioblastomas are malignant tumors of the central nervous system hallmarked by subclonal diversity and dynamic adaptation amid developmental hierarchies. The source of dynamic reorganization within the spatial context of these tumors remains elusive. Here, we characterized glioblastomas by spatially resolved transcriptomics, metabolomics, and proteomics. By deciphering regionally shared transcriptional programs across patients, we infer that glioblastoma is organized by spatial segregation of lineage states and adapts to inflammatory and/or metabolic stimuli, reminiscent of the reactive transformation in mature astrocytes. Integration of metabolic imaging and imaging mass cytometry uncovered locoregional tumor-host interdependence, resulting in spatially exclusive adaptive transcriptional programs. Inferring copy-number alterations emphasizes a spatially cohesive organization of subclones associated with reactive transcriptional programs, confirming that environmental stress gives rise to selection pressure. A model of glioblastoma stem cells implanted into human and rodent neocortical tissue mimicking various environments confirmed that transcriptional states originate from dynamic adaptation to various environments.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Metabolômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...