Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259937

RESUMO

We herein disclose a highly efficient one-pot synthetic strategy for dihydrobenzo[a]fluorenes via cascade rhodium(III)-catalyzed ortho-C-H activation/annulation of thiobenzamides with aryl ethynyl ketones and subsequently copper(II)-promoted intramolecular C-H/C-H cross-coupling reactions. Mechanistic investigations suggest that Cu(II) plays two crucial roles by serving as a sulfide scavenger to regenerate the Rh(III) catalyst and promoting the intramolecular C-H/C-H cross-coupling reaction. This protocol greatly streamlines accesses to a variety of appealing tetracyclic benzo[a]fluorene skeletons, which may have potential biological activity and medicinal properties.

2.
Chem Sci ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39290592

RESUMO

In this work, we designed and synthesized three spirobifluorene (SBF)-based hole-transporting materials (HTMs) by incorporating the di-4-tolylamino group at different positions of the SBF skeleton. These materials demonstrate excellent thermal stability with thermal decomposition temperatures (T d) up to 506 °C and outstanding morphological stability with a glass transition temperature (T g) exceeding 145 °C. The meta-linkage mode between the conjugated skeleton and functional groups in the molecular structure results in electronic decoupling, giving these 3,6-substituted SBFs higher triplet energies (E T) compared to 2,7-substituted SBFs. This makes the 3,6-substituted SBFs suitable as universal HTMs for red, green, and blue (RGB) organic light emitting diodes (OLEDs). Among the three HTMs, 3,3',6,6'-tetra(N,N-ditolylamino)-9,9'-spirobifluorene (3,3',6,6'-TDTA-SBF) exhibits the best device performance, achieving maximum external quantum efficiencies (EQEmax) of 26.1%, 26.4%, and 25.4% for RGB phosphorescent OLEDs, with extremely low efficiency roll-off in both green and blue devices. Utilizing 3,3',6,6'-TDTA-SBF as the HTM, we have also fabricated narrowband blue OLEDs based on the widely used multiple resonance emitter BCz-BN, which exhibits a EQEmax of 29.8% and low efficiency roll-off.

3.
Mater Horiz ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993164

RESUMO

Herein, we present a molecular design strategy centered on the spiroannulation of the MR-core skeleton to fabricate green MR-emitters and reduce device efficiency roll-off. Fusing 9,9'-spirobifluorene into the central framework of MR-emitters facilitates the distribution of the highest occupied molecular orbital (HOMO) across the spiro units, leading to a red-shifted emission and giving rise to a pure-green MR-emitter (DPhCz-SFBN) with the Commission Internationale de l'Eclairage (CIE) coordinates of [0.16, 0.74] in toluene solution, closely matching the BT.2020 standard for green. Additionally, the resultant highly twisted hetero[6]helicene conformation and a nearly perpendicular conformation of spirocycle structure effectively minimize close π-π stacking interactions among the MR-emitting cores, thereby reducing exciton quenching. Consequently, organic light-emitting diodes (OLEDs) based on DPhCz-SFBN exhibit a high maximum quantum efficiency (EQEmax) of 32.8% with low efficiency roll-off, maintaining an EQE of 23.2% at a practical luminance level of 5000 cd m-2.

4.
Chem Sci ; 15(27): 10547-10555, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38994415

RESUMO

In this work, we present a design concept of introducing linear structures into the orthogonal configuration of 9,9'-spirobifluorene (SBF), aiming to enhance carrier mobilities while maintaining high triplet energies (E T), which are two critical parameters for optimizing host materials in organic light-emitting diodes (OLEDs). To validate our proposed design, four pivotal model molecules of 1,4-diaryl SBFs were synthesized via interannular C-H arylation of bi(hetero)aryl-2-formaldehydes, a task challenging to accomplish using previous synthetic methodologies. The orthogonal configuration and the steric hindrance of SBF lead to high E T through the conjugation breaking at C1 and C4 positions, rendering 1,4-diaryl SBFs suitable as universal pure hydrocarbon (PHC) hosts for red, green, and blue (RGB) phosphorescent OLEDs (PhOLEDs). Meanwhile, the linearity and relatively good planarity of the para-quaterphenyl structure promote high carrier mobilities through orderly intermolecular packing. The synergistic effects of linearity and orthogonality in 1-(para-biphenyl)-4-phenyl-SBF result in exceptional device performance with external quantum efficiencies (EQEs) of 26.0%, 26.1%, and 22.5% for RGB PhOLEDs, respectively. Notably, the green PhOLED exhibits minimal efficiency roll-off, positioning its device performances among the state-of-the-art in PHC hosts.

5.
Chem Commun (Camb) ; 59(58): 8957-8960, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37378448

RESUMO

Herein, the synthesis and chemical resolution of 1,1'-spirobisindane-3,3'-dione have been accomplished utilizing inexpensive and readily available benzaldehyde and acetone as starting materials, and (1R,2R)- or (1S,2S)-1,2-diphenylethane-1,2-diol as a recyclable chiral resolution reagent. The further transformation of R- and S-1,1'-spirobisindane-3,3'-dione into chiral monomers and polymers has been achieved by the reasonable design of the synthetic route and the optimization of the polymerization conditions. The resulting chiroptical polymers exhibit blue emission with thermally activated delayed fluorescence (TADF), excellent optical activities with circular dichroism intensities per molar absorption coefficient (gabs) of up to 6.4 × 10-3, and intense circularly polarized luminescence (CPL) with luminescence dissymmetry factor (glum) values of up to 2.4 × 10-3.

6.
Chem Commun (Camb) ; 59(34): 5126-5129, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37039542

RESUMO

Herein, double boron (DB)-based narrowband pure-green multiresonance (MR) emitters DBF-DBN and DBT-DBN have been designed and synthesized. Dibenzo[b,d]furan and dibenzo[b,d]thiophene as linkages between two B-N skeletons endow target DB-MR-emitters with a rigid and symmetric molecular structure, which efficiently extends the π-conjugation length and suppresses vibrational relaxation, resulting in a narrowband pure-green emission. DBT-DBN exhibits a remarkably higher reverse intersystem crossing (RISC) rate (kRISC = 7.4 × 105 s-1) than DBF-DBN (kRISC = 1.1 × 105 s-1) due to the heavy-atom effect of sulfur. The organic light-emitting diode (OLEDs) based on DBT-DBN shows an ultrapure green emission with maximum external quantum efficiencies (EQEs) up to 31.3%, an emission peak at 520 nm, and a narrow full-width at half-maximum (FWHM) of 24 nm, meeting the BT.2020 green standard.

7.
Angew Chem Int Ed Engl ; 62(3): e202211412, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36347830

RESUMO

Disclosed herein is a RhCl3 -catalyzed peri-selective C-H/C-H oxidative homo-coupling of 1-substituted naphthalenes, which provides a highly efficient and streamlined approach to chalcogen-embedded anthanthrenes from readily available starting materials. Introducing O, S, and Se into the anthanthrene skeleton leads to gradually increased π-π stacking distances but significantly enhanced π-π overlaps with the growth of the hetero-atom radius. Moderate π-π distance, overlap area, and intermolecular S-S interactions endow S-embedded anthanthrene (PTT) with excellent 2D charge-transport properties. Moreover, the transformation of p-type to n-type S-embedded anthanthrenes is realized for the first time via the S-atom oxidation from PTT to PTT-O4. In organic field-effect transistor devices, PTT derivatives exhibit hole transport with mobilities up to 1.1 cm2  V-1 s-1 , while PTT-O4 shows electron transport with a mobility of 0.022 cm2  V-1 s-1 .

8.
Chem Commun (Camb) ; 58(50): 7042-7045, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35647666

RESUMO

Herein, N-heterocyclic carbene-directed Ir(III)-catalyzed cascade C-H arylation/annulation of N-arylimidazolium with diaryliodonium salts has been accomplished for the first time via a quadruple C-H activation strategy to construct imidazo[1,2-f]phenanthridinium structures. This protocol overcomes the compatibility of three kinds of different C-H activations with high catalytic efficiency, which allows ortho-unhindered N-arylimidazoliums to undergo a diarylation/annulation reaction, affording a variety of polysubstituted imidazo[1,2-f]phenanthridiniums. Neutral imidazo[1,2-f]phenanthridines are also prepared via a demethylation reaction of imidazo[1,2-f]phenanthridiniums.

9.
Chem Commun (Camb) ; 58(57): 7952-7955, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35749123

RESUMO

Reported herein is rhodium-catalysed oxidative C-H/C-H cross-coupling of S-aryl sulfoximines with thiophenes via a chelation-assisted strategy, which provides an efficient approach for the construction of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and benzothiazine skeletons from easily available substrates. This protocol exhibits a good compatibility with halogen substituents, thus paving the way for further transformation to prepare various organic functional molecules. The resulting benzothiazine derivative shows a deep blue emission with Commission Internationale de 'Eclairage (CIE) coordinates of (0.15, 0.04), a high quantum yield, and a delayed fluorescence lifetime.

10.
J Phys Chem Lett ; 13(20): 4486-4494, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35574839

RESUMO

Modulating the excited-state intramolecular proton transfer (ESIPT) reaction to achieve anticipant performance is always fascinating for chemists. However, feasible methods and a definite mechanism for tuning the ESIPT reaction remain insufficient. In this work, we reported the feasibility of continuously modulating the ESIPT dynamics in 2-(2'-hydroxyphenyl)oxazole (HPO) derivatives with different substitutions on the positions 5 and 5' of the core HPO through steady-state/transient spectroscopy and theoretical calculations. We found that the main factor affecting the tendency of the ESIPT reaction is the variation of electron population on proton donor and acceptor. An index Δpdif was proposed to evaluate the overall promotion effect on proton transfer caused by the variation of electron population on proton donor and acceptor, which shows high reliability in interpreting the ESIPT tendency. This method, for its capacity to quickly estimate the tendency of ESIPT, shows great potential in ESIPT molecular design with chemical substitution of electron-donating/withdrawing moieties.

11.
Org Lett ; 24(10): 1929-1934, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35254077

RESUMO

Disclosed herein is a catalytic oxidative C-H annulation of thiophenol derivatives with 1,3-diynes, which provides an efficient synthetic approach to both symmetrical and nonsymmetrical 3,3'-bibenzothiophenes. This protocol exhibits a broad substrate scope, excellent functional group tolerance, high regioselectivity, and catalyst-enabled switchable mono/diannulation selectivity. Moreover, three novel helical-type bithiophene heptagonal imides, which are potentially applicable in optoelectronic materials, are constructed based on this reaction.

12.
Chem Commun (Camb) ; 58(10): 1581-1584, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018392

RESUMO

Herein, Ag(I)-promoted regioselective intramolecular radical nucleophilic addition/rearrangement of 2-aryl diazaboroles has been accomplished for the first time to construct phenazine structures. This protocol is an umpolung strategy based on the classical electrophilic mechanism, and therefore, a reversed regioselectivity was observed, which provides an opportunity to prepare sterically hindered phenazines. The resulting thermally activated delayed fluorescence (TADF) materials based on phenazine exhibit emission bands from green to red with high quantum yields and moderate fluorescence lifetimes as solid films.

13.
Mater Horiz ; 8(5): 1499-1508, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846458

RESUMO

Described herein is the first example of mechanically induced single-molecule white-light emission based on excited-state intramolecular proton transfer (ESIPT) materials. The mechanism of mechanochromism is clearly disclosed by powder and single crystal X-ray diffraction (XRD) data, infrared spectroscopy, and fluorescence up-conversion measurement, etc. 2-(2'-Hydroxyphenyl)oxazole (6b) with a herringbone packing motif exhibits a predominant keto-form emission, giving off yellowish-green fluorescence. Mechanical grinding transforms the herringbone packing motif into a brickwork packing motif, decreases the intermolecular distances, which results in an enhanced intermolecular charge-transfer interaction, and therefore changes the ESIPT dynamics, leading to an enhanced enol-form emission and white fluorescence. Herringbone-packing 6b is thermodynamically more stable than brickwork-packing 6b. Thus, the latter can convert to the former by solvent fuming or thermal annealing.


Assuntos
Luz , Prótons , Cristalografia por Raios X , Gases , Solventes
14.
Angew Chem Int Ed Engl ; 60(34): 18852-18859, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34160136

RESUMO

Herein disclosed is the first example of diarylation/annulation of benzoic acids via an iridium catalyst system. This protocol provides a step-economic and highly efficient pathway to 1-aryl, 1,3-diaryl, 1,7-diaryl and 1,3,7-triaryl spirobifluorenes from readily available starting materials. The applications of multi-aryl spirobifluorenes as pure hydrocarbon (PHC) hosts for red, green, and blue (RGB) phosphorescent organic light-emitting diodes (PhOLEDs) were explored. Due to high triplet energies, 1,3-diaryl spirobifluorenes exhibit the potential as the host material of blue PhOLEDs. 1,7-Diaryl spirobifluorene can serve as the host of green PhOLEDs. 1,3,7-Triaryl spirobifluorene is a high-performance host for red PhOLEDs, which exhibits a high external quantum efficiency (EQE) up to 27.3 %. This work not only exemplifies the great potential of multi-aryl spirobifluorenes as PHC hosts, but also offers a new approach for the synthesis of these PHC hosts.

15.
Org Lett ; 23(10): 3839-3843, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33960193

RESUMO

The programmed arylation of purine has been developed to construct a series of efficient thermally activated delayed fluorescent (TADF) materials. The corresponding organic light-emitting diodes (OLEDs) exhibit external quantum efficiency as high as 16.0% alongside small efficiency roll-off. Intriguingly, this work proves that the good management of localized states is an efficient way to reduce device efficiency roll-off and is crucial for the future design of high-performance OLEDs.

16.
Sci Bull (Beijing) ; 66(5): 441-448, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654181

RESUMO

Thermally activated delayed fluorescence (TADF) sensitized fluorescent organic light-emitting diodes (TSF-OLEDs) have shown great potential for the realization of high efficiency with low efficiency roll-off and good color purity. However, the superior examples of TSF-OLEDs are still limited up to now. Herein, a trade-off strategy is presented for designing efficient TADF materials and achieving high-performance TSF-OLEDs via the construction of a new type of triazolotriazine (TAZTRZ) acceptor. The enhanced electron-withdrawing ability of TAZTRZ acceptor, fused by triazine (TRZ) and triazole (TAZ) together, enables TADF luminogens with small singlet-triplet energy gap (ΔEST) values. Meanwhile, the increased planarity from the TRZ-phenyl linkage (6:6 system) to the TAZ-phenyl linkage (5:6 system) can compensate the decrease of oscillator strength (f) while lowing ΔEST, thus achieving a trade-off between small ΔEST and high f. As a result, the related TSF-OLED achieved an extremely low turn-on voltage of 2.1 V, an outstanding maximum external quantum efficiency (EQEmax) of 23.7% with small efficiency roll-off (EQE1000 of 23.2%; EQE5000 of 20.6%) and an impressively high maximum power efficiency of 82.1 lm W-1, which represents the state-of-the-art performance for yellow TSF-OLEDs.

17.
Angew Chem Int Ed Engl ; 60(7): 3493-3497, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33084206

RESUMO

Disclosed here is a palladium-catalyzed direct [4+1] spiroannulation of ortho-C-H bonds of naphthols with cyclic diaryliodonium salts to construct spirofluorenyl naphthalenones (SFNP) under mild reaction conditions. This spiroannulation directly transforms the hydroxy group into a carbonyl group, and also tolerates reactive functional groups such as the halo groups, which provide an opportunity to rapidly assemble structurally new thermally activated delayed fluorescent (TADF) materials that feature a carbonyl group with an adjacent spirofluorenyl unit as the acceptor. As an illustrated example, the OLED device utilizing the assembled DMAC-SFNP as the host material exhibits a low turn-on voltage of 2.5 V and an ultra-high external quantum efficiency of 32.2 %. This work provides inspiration for structurally new TADF materials, and also displays the potential of C-H activation as a synthetic strategy for the innovation of optoelectronic materials.

18.
Angew Chem Int Ed Engl ; 59(52): 23532-23536, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-32924253

RESUMO

Described herein is a strategy to construct cationic azahelicenes through the three-component annulation reaction of isoquinoline, indole, and 1,2-dichloroethane (DCE), in which DCE serves as an in situ activating agent for C1-H activation of isoquinoline, a vinyl equivalent, and a solvent. This in situ activation annulation reaction features a facile one-step synthesis and complete regioselectivity. The complete regioselectivity of C1 over C3 for the isoquinoline ring paves a path to the helical structure in a highly ordered sequence. One of the synthesized ionic [5]azahelicenium fluorophores exhibits the potential to serve as a mitochondria-targeted biomarker with good photostability and low cytotoxicity.


Assuntos
Compostos Policíclicos/química , Catálise , Estrutura Molecular , Estereoisomerismo
19.
Beilstein J Org Chem ; 16: 530-536, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280382

RESUMO

The regioselective C-H arylation of substituted polycyclic aromatic hydrocarbons (PAHs) is a desired but challenging task. A copper-catalyzed C7-H arylation of 1-naphthamides has been developed by using aryliodonium salts as arylating reagents. This protocol does not need to use precious metal catalysts and tolerates wide variety of functional groups. Under standard conditions, the remote C-H arylation of other PAHs including phenanthrene-9-carboxamide, pyrene-1-carboxamide and fluoranthene-3-carboxamide has also accomplished, which provides an opportunity for the development of diverse organic optoelectronic materials.

20.
Angew Chem Int Ed Engl ; 59(25): 9992-9996, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31909869

RESUMO

The development of efficient non-doped organic light-emitting diodes (OLEDs) is highly desired but very challenging because of a severe aggregation-caused quenching effect. Herein, we present a heptagonal diimide acceptor (BPI), which can restrict excessive intramolecular rotation and inhibit close intermolecular π-π stacking due to well-balanced rigidity and rotatability of heptagonal structure. The BPI-based luminogen (DMAC-BPI) shows significant aggregation-induced delayed florescence with an extremely high photoluminescence quantum yield (95.8 %) of the neat film, and the corresponding non-doped OLEDs exhibit outstanding electroluminescence performance with maximum external quantum efficiency as high as 24.7 % and remarkably low efficiency roll-off as low as 1.0 % at 1000 cd m-2 , which represents the state-of-the-art performance for non-doped OLEDs. In addition, the synthetic route to DMAC-BPI is greatly streamlined and simplified through oxidative Ar-H/Ar-H homo-coupling reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA