Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Anesthesiol ; 24(1): 137, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600490

RESUMO

BACKGROUND: With the increasing prevalence of colorectal cancer (CRC), optimizing perioperative management is of paramount importance. This study investigates the potential of stellate ganglion block (SGB), known for its stress response-mediating effects, in improving postoperative recovery. We postulate that preoperative SGB may enhance the postoperative recovery of patients undergoing laparoscopic CRC surgery. METHODS: We conducted a randomized controlled trial of 57 patients undergoing laparoscopic colorectal cancer surgery at a single center. Patients, aged 18-70 years, were randomly assigned to receive either preoperative SGB or standard care. SGB group patients received 10 mL of 0.2% ropivacaine under ultrasound guidance prior to surgery. Primary outcome was time to flatus, with secondary outcomes encompassing time to defecation, lying in bed time, visual analog scale (VAS) pain score, hospital stays, patient costs, intraoperative and postoperative complications, and 3-year mortality. A per-protocol analysis was used. RESULTS: Twenty-nine patients in the SGB group and 28 patients in the control group were analyzed. The SGB group exhibited a significantly shorter time to flatus (mean [SD] hour, 20.52 [9.18] vs. 27.93 [11.69]; p = 0.012), accompanied by decreased plasma cortisol levels (mean [SD], postoperatively, 4.01 [3.42] vs 7.75 [3.13], p = 0.02). Notably, postoperative pain was effectively managed, evident by lower VAS scores at 6 h post-surgery in SGB-treated patients (mean [SD], 4.70 [0.91] vs 5.35 [1.32]; p = 0.040). Furthermore, patients in the SGB group experienced reduced hospital stay length (mean [SD], day, 6.61 [1.57] vs 8.72 [5.13], p = 0.042). CONCLUSIONS: Preoperative SGB emerges as a promising approach to enhance the postoperative recovery of patients undergoing laparoscopic CRC surgery. CLINICAL TRIAL REGISTRATION: ChiCTR1900028404, Principal investigator: Xia Feng, Date of registration: 12/20/2019.


Assuntos
Neoplasias Colorretais , Cirurgia Colorretal , Laparoscopia , Humanos , Gânglio Estrelado , Flatulência/complicações , Método Duplo-Cego , Dor Pós-Operatória/epidemiologia , Dor Pós-Operatória/prevenção & controle , Dor Pós-Operatória/tratamento farmacológico , Laparoscopia/efeitos adversos , Neoplasias Colorretais/cirurgia , Ultrassonografia de Intervenção
2.
Br J Anaesth ; 130(2): 191-201, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36088134

RESUMO

BACKGROUND: Early exposure to general anaesthetics for multiple surgeries or procedures might negatively affect brain development. Recent studies indicate the importance of microbiota in the development of stress-related behaviours. We determined whether repeated anaesthesia and surgery in early life cause gut microbiota dysbiosis and anxiety-like behaviours in rats. METHODS: Sprague Dawley rats received skin incisions under sevoflurane 2.3 vol% three times during the first week of life. After 4 weeks, gut microbiota, anxiety-related behaviours, hippocampal serotonergic activity, and plasma stress hormones were tested. Subsequently, we explored the effect of faecal microbiota transplantation from multiple anaesthesia/surgery exposed rats after administration of a cocktail of antibiotics on anxiety-related behaviours. RESULTS: Anxiety-like behaviours were observed in rats with repeated anaesthesia/surgery exposures: In the OF test, multiple anaesthesia/surgery exposures induced a decrease in the time spent in the centre compared to the Control group (P<0.05, t=3.05, df=16, Cohen's d=1.44, effect size=0.58). In the EPM test, rats in Multiple AS group travelled less (P<0.05, t=5.09, df=16, Cohen's d=2.40, effective size=0.77) and spent less time (P<0.05, t=3.58, df=16, Cohen's d=1.69, effect size=0.65) in the open arms when compared to the Control group. Repeated exposure caused severe gut microbiota dysbiosis, with exaggerated stress response (P<0.01, t=4.048, df=16, Cohen's d=-1.91, effect size=-0.69), a significant increase in the hippocampal concentration of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) (P<0.05; for 5-HT: t=3.33, df=18, Cohen's d=-1.49, effect size=-0.60; for 5-HIAA: t=3.12, df=18, Cohen's d=-1.40, effect size=-0.57), and changes in gene expression of serotonergic receptors later in life (for Htr1a: P<0.001, t=4.49, df=16, Cohen's d=2.24, effect size=0.75; for Htr2c: P<0.01, t=3.72, df=16, Cohen's d=1.86, effect size=0.68; for Htr6: P<0.001, t=7.76, df=16, Cohen's d=3.88, effect size=0.89). Faecal microbiota transplantation led to similar anxiety-like behaviours and changes in the levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. CONCLUSIONS: Gut microbiota dysbiosis caused by early repeated exposure to anaesthesia and surgery affects long-term anxiety emotion behaviours in rats.


Assuntos
Anestesia , Microbioma Gastrointestinal , Ratos , Animais , Serotonina/metabolismo , Ácido Hidroxi-Indolacético , Ratos Sprague-Dawley , Disbiose/induzido quimicamente , Ansiedade/etiologia
3.
Front Aging Neurosci ; 14: 925728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966788

RESUMO

Background: Developing brain is highly plastic and can be easily affected. Growing pediatric usage of anesthetics during painless procedures has raised concerns about the effect of low-dose anesthetics on neurodevelopment. It is urgent to ascertain the neuronal effect of low-dose Propofol, a widely used anesthetic in pediatrics, on developing brains. Methods: The behavioral tests after neonatal exposure to low-dose/high-dose Propofol in mice were conducted to clarify the cognitive effect. The nascent cells undergoing proliferation and differentiation stage in the hippocampus and cultured neural stem cells (NSCs) were further identified. In addition, single-nuclei RNA sequencing (snRNA-seq), NSCs bulk RNA-seq, and metabolism trials were performed for pathway investigation. Furthermore, small interfering RNA and stereotactic adenovirus injection were, respectively, used in NSCs and hippocampal to confirm the underlying mechanism. Results: Behavioral tests in mice showed enhanced spatial cognitive ability after being exposed to low-dose Propofol. Activated neurogenesis was observed both in hippocampal and cultured NSCs. Moreover, transcriptome analysis of snRNA-seq, bulk RNA-seq, and metabolism trials revealed a significantly enhanced oxidative phosphorylation (OXPHOS) level in NSCs. Furthermore, PGC-1α, a master regulator in mitochondria metabolism, was found upregulated after Propofol exposure both in vivo and in vitro. Importantly, downregulation of PGC-1α remarkably prevented the effects of low-dose Propofol in activating OXPHOS and neurogenesis. Conclusions: Taken together, this study demonstrates a novel alteration of mitochondrial function in hippocampal neurogenesis after low-dose Propofol exposure, suggesting the safety, even potentially beneficial effect, of low-dose Propofol in pediatric use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA