Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 649: 123667, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38048890

RESUMO

Galangin (Gal) is a natural plant flavonoid. More and more evidence shows that Gal can achieve anti-tumor effects by regulating various mechanisms. However, its poor water solubility, low bioavailability, and insufficient lesion targeting limit its clinical application. To overcome these shortcomings, we designed and developed a mesoporous nanosystem (GE11-CuS) that actively located the target area and photo-controlled drug release, which promoted the rapid accumulation of drugs in tumor tissues under NIR irradiation, thus achieving positive effects against cancer. In this study, we explored the application of the Gal-loaded nanometer system (GE11-CuS@Gal) in the treatment of oral squamous cell carcinoma (OSCC) both in vitro and in vivo. The results exhibited that GE11-CuS@Gal had excellent targeting ability and could accumulate efficiently in tumor cells (HSC-3). Meanwhile, the temperature of GE11-CuS@Gal increasing rapidly under NIR illumination damaged the integrity of the carrier and allowed Gal molecules to escape from the pores of the nanoparticles. When the accumulation of Gal in the nidus reached a certain level, the intracellular ROS level could be significantly increased and the antioxidative stress pathway mediated by Nrf2/OH-1 was effectively blocked, to inhibit the growth and migration of tumors. In conclusion, the GE11-CuS improved the antitumor activity of Gal in the body, which laid a foundation for the treatment of OSCC with traditional Chinese medicine ingredients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Nanopartículas , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Liberação Controlada de Fármacos , Neoplasias Bucais/tratamento farmacológico , Flavonoides , Cobre
2.
Int J Pharm ; 607: 120978, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34371152

RESUMO

Disulfiram (DSF) is an effective copper (Cu2+)-dependent antitumor agent. In the present study, we explored use of transferrin (Tf)-modified DSF/copper sulfide (CuS) nanocomplex (Tf-DSF/CuS) for glioma therapy. Tf was used as glioma targeting motifs, DSF as an anticancer agent, and CuS as a source of Cu2+ ions and a photothermal agent. DSF was loaded on CuS by metal-chelation, and released from the nanocomplex under acidic condition. The Tf-DSF/CuS complex exhibited high cytotoxic effect in vitro. Notably, cytotoxic activity was correlated with pH triggered release of Cu2+ which initiated non-toxicity to toxicity switch of DSF. Ultrasound-targeted microbubble destruction (UTMD) technique was used for highly selective accumulation of intravenous injected Tf-DSF/CuS in the glioma orthotopic tumor as compared with the free drugs and non-targeted DSF/CuS groups. Magnetic resonance imaging and pathological examinations showed that Tf-DSF/CuS effectively suppressed tumor growth, with an inhibition ratio of ~85%. Additionally, DSF load did not compromise photothermal conversion ability of CuS nanoparticles. Efficacy of the photothermal ablation therapy of Tf-DSF/CuS was evaluated under 808 nm laser irradiation both in vitro and in vivo. These findings show that copper-sulfide based disulfiram nanoparticles are effective agents for anti-glioma therapy.


Assuntos
Glioma , Nanopartículas , Cobre , Dissulfiram , Glioma/tratamento farmacológico , Humanos , Sulfetos
3.
Theranostics ; 10(25): 11719-11736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052243

RESUMO

Rationale: Photothermal therapy employs the photoabsorbers to generate heat under the near-infrared (NIR) irradiation for thermal tumor ablation. However, NIR irradiation might damage the adjacent tissue due to the leakage of the photoabsorbers and the residual materials after treatment might hinder the local healing process. A bifunctional hydrogel that holds both photothermal property and potent pro-healing ability provides a viable option to resolve this issue. Methods: In this study, we developed a bioinspired green hydrogel (BVSF) with the integration of bioproduct biliverdin into natural derived silk fibroin matrix for antiglioma photothermal therapy and wound healing. Results: The BVSF hydrogel possessed excellent and controllable photothermal activity under NIR irradiation and resulted in effective tumor ablation both in vitro and in vivo. Additionally, the BVSF hydrogel exerted anti-inflammatory effects both in vitro and in vivo, and stimulated angiogenesis and wound healing in a full-thickness defect rat model. Conclusion: Overall, this proof-of-concept study was aimed to determine the feasibility and reliability of using an all-natural green formulation for photothermal therapy and post-treatment care.


Assuntos
Materiais Biomiméticos/administração & dosagem , Neoplasias Encefálicas/terapia , Glioma/terapia , Hidrogéis/administração & dosagem , Terapia Fototérmica/métodos , Animais , Biliverdina/química , Materiais Biomiméticos/química , Bombyx , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Fibroínas/química , Glioma/patologia , Humanos , Hidrogéis/química , Raios Infravermelhos , Injeções Intralesionais , Masculino , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Células RAW 264.7 , Ratos , Reprodutibilidade dos Testes , Pele/efeitos dos fármacos , Pele/lesões , Cicatrização/efeitos dos fármacos
4.
Mol Pharm ; 17(10): 3857-3869, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32833457

RESUMO

Disulfiram (DSF) is an FDA-approved anti-alcoholic drug that has recently proven to be effective in cancer treatment. However, the short half-life in the bloodstream and the metal ion-dependent antitumor activity significantly limited the further application of DSF in the clinical field. To this end, we constructed a silk fibroin modified disulfiram/zinc oxide nanocomposites (SF/DSF@ZnO) to solubilize and stabilize DSF, and, more importantly, achieve pH triggered Zn2+ release and subsequent synergistic antitumor activity. The prepared SF/DSF@ZnO nanocomposites were spherical and had a high drug loading. Triggered by the lysosomal pH, SF/DSF@ZnO could induce the rapid release of Zn2+ under the acidic conditions and caused nanoparticulate disassembly along with DSF release. In vitro experiments showed that cytotoxicity of DSF could be enhanced by the presence of Zn2+, and further amplified when encapsulated into SF/DSF@ZnO nanocomposites. It was confirmed that the significantly amplified cytotoxicity of SF/DSF@ZnO was resulted from pH-triggered Zn2+ release, inhibited cell migration, and increased ROS production. In vivo study showed that SF/DSF@ZnO nanocomposites significantly increased the tumor accumulation and prolonged the retention time. In vivo antitumor experiments in the xenograft model showed that SF/DSF@ZnO exerted the highest tumor-inhibition rate among all the drug treatments. Therefore, this exquisite study established silk fibroin-modified disulfiram/zinc oxide nanocomposites, SF/DSF@ZnO, where ZnO not only acted as a delivery carrier but also served as a metal ion reservoir to achieve synergistic antitumor efficacy. The established DSF nanoformulation displayed excellent therapeutic potential in future cancer treatment.


Assuntos
Antineoplásicos/farmacocinética , Nanocompostos/administração & dosagem , Neoplasias/tratamento farmacológico , Zinco/farmacocinética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Bombyx/química , Cátions Bivalentes/farmacocinética , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Dissulfiram/administração & dosagem , Dissulfiram/química , Dissulfiram/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Fibroínas/química , Meia-Vida , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Neoplasias/patologia , Óxido de Zinco/administração & dosagem , Óxido de Zinco/química , Óxido de Zinco/farmacocinética
5.
Artif Cells Nanomed Biotechnol ; 48(1): 143-158, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32207347

RESUMO

Surgical resection remains the preferred approach for some patients with glioblastoma (GBM), and eradication of the residual tumour niche after surgical resection is very helpful for prolonging patient survival. However, complete surgical resection of invasive GBM is difficult because of its ambiguous boundary. Herein, a novel targeting material, c(RGDyk)-poloxamer-188, was synthesized by modifying carboxyl-terminated poloxamer-188 with a glioma-targeting cyclopeptide, c(RGDyk). Quantum dots (QDs) as fluorescent probe were encapsulated into the self-assembled c(RGDyk)-poloxamer-188 polymer nanoparticles (NPs) to construct glioma-targeted QDs-c(RGDyk)NP for imaging-guided surgical resection of GBM. QDs-c(RGDyk)NP exhibited a moderate hydrodynamic diameter of 212.4 nm, a negative zeta potential of -10.1 mV and good stability. QDs-c(RGDyk)NP exhibited significantly lower toxicity against PC12 and C6 cells and HUVECs than free QDs. Moreover, in vitro cellular uptake experiments demonstrated that QDs-c(RGDyk)NP specifically targeted C6 cells, making them display strong fluorescence. Combined with ultrasound-targeted microbubble destruction (UTMD), QDs-c(RGDyk)NP specifically accumulated in glioma tissue in orthotropic tumour rats after intravenous administration, evidenced by ex vivo NIR fluorescence imaging of bulk brain and glioma tissue sections. Furthermore, fluorescence imaging with QDs-c(RGDyk)NP guided accurate surgical resection of glioma. Finally, the safety of QDs-c(RGDyk)NP was verified using pathological HE staining. In conclusion, QDs-c(RGDyk)NP may be a potential imaging probe for imaging-guided surgery.


Assuntos
Glioma/cirurgia , Nanopartículas/química , Peptídeos Cíclicos/química , Pontos Quânticos/administração & dosagem , Cirurgia Assistida por Computador/instrumentação , Administração Intravenosa , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Corantes Fluorescentes/uso terapêutico , Glioma/diagnóstico por imagem , Glioma/patologia , Humanos , Microbolhas/uso terapêutico , Nanopartículas/administração & dosagem , Peptídeos Cíclicos/administração & dosagem , Poloxâmero/administração & dosagem , Poloxâmero/química , Pontos Quânticos/química , Ratos , Ondas Ultrassônicas
6.
Eur J Pharm Sci ; 148: 105316, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32201342

RESUMO

Intrauterine adhesion (IUA) is characterized by endometrial stromal replaced with fibrous tissue during the trauma or operation induced injury. Current clinic IUA management mainly involves surgical removal of the connective tissues and physical separation and often results in reoccurrence. It is of clinic interest to directly address the issue via facilitating the endometrial repair and thereby inhibiting the formation of re-adhesion. To this end, we designed a nanocomposite aloe/poloxamer hydrogel for ß-estradiol (E2) intrauterine delivery to exert multi-therapeutic effects and promote endometrial regeneration for IUA treatment. Nanoparticulate decellularized uterus (uECMNPs) was prepared to encapsulate E2 (E2@uECMNPs), which improved the solubility and prolonged cargo release. Then, E2@uECMNPs were further embedded into the thermosensitive aloe-poloxamer hydrogel (E2@uECMNPs/AP). Multiple components from E2@uECMNPs/AP system could collectively promote proliferation and inhibit apoptosis of endometrial stromal cells. E2@uECMNPs/AP significantly increased morphological recovery and decreased uterine fibrosis rate compared with IUA rats in other groups in vivo. Additionally, the levels of Ki67, cytokeratin, and estrogen receptor ß were all up-regulated, along with the decreased expression of TGF-ß1 and TNF-α in the uterus from rats receiving E2@uECMNPs/AP therapy. Taken together, in situ administration of E2@uECMNPs/AP hydrogel could effectively promote endometrial regeneration and prevent the re-adhesion.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Endométrio/efeitos dos fármacos , Estradiol/farmacologia , Hidrogéis , Regeneração/efeitos dos fármacos , Aloe , Animais , Linhagem Celular Tumoral , Proliferação de Células , Colágeno/metabolismo , Citocinas/metabolismo , Portadores de Fármacos , Estradiol/metabolismo , Feminino , Humanos , Poloxâmero , Ratos , Aderências Teciduais , Útero/metabolismo , Cicatrização
7.
Artif Cells Nanomed Biotechnol ; 48(1): 218-229, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31851840

RESUMO

Decellularized extracellular matrix (dECM) has been considered as a promising scaffold in xenotransplantation, yet natural tissue dECM is often mechanically weak and rapidly degraded, compromising the outcomes. How to restore the mechanical strength and optimise the in vivo degradation, but maintain the microstructure and maximumly suppress the immune rejection, remains challenging. For this aim, we prepared and characterised various crosslinked decellularized rabbit uterus matrix (dUECM) and evaluated in vivo performance after uterus xenotransplantation from rabbit to rat. Naturally derived genipin (GP) and procyanidins (PC) were chosen to crosslink the dUECM, producing significant mechanical enhanced crosslinked-dUECM along with prolonged enzymatic degradation rate. Xenogeneic subcutaneous graft studies revealed that PC- and GP-crosslinked dUECM experienced significant cell infiltration and caused low immune reactions, indicating the desired biocompatibility. In vivo transplantation of GP- and PC-crosslinked dUECM to a uterus circular excised rat yielded excellent recellularization ability and promoted uterus regeneration after 90 days. While the reconstruction efficacy of crosslinked dUECM is highly depended on the crosslinking degree, crosslinking condition must be carefully evaluated to balance the role of crosslinked dECM in mechanical and biological support for tissue regeneration promotion.


Assuntos
Matriz Extracelular/metabolismo , Regeneração , Engenharia Tecidual/métodos , Alicerces Teciduais , Útero/fisiologia , Animais , Feminino , Teste de Materiais , Coelhos , Ratos
8.
Drug Deliv ; 27(1): 54-65, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31858849

RESUMO

Didymin is a dietary flavonoid that first found in citrus fruits, and possesses antioxidant properties. Our preliminary experiments first discovered that didymin was able to sensitize the resistant cancer cells against chemotherapeutics and combat multidrug resistance. However, its poor aqueous solubility and resultant low bioavailability limit its potentials as an adjuvant phytochemical drug for chemotherapy. Thus, this study prepared the inclusion complex of didymin with ß-cyclodextrin and 2-hydroxypropyl-ß-cyclodextrin to improve its bioavailability and then evaluate their chemosensitization effects. The didymin inclusion complexes formulation was prepared and their host-guest structure was characterized by FT-IR, PXRD, DSC, and SEM techniques. In vitro/in vivo results demonstrated that didymin inclusion complex enhanced its water solubility and orally bioavailability. Furthermore, didymin inclusion complex exerted considerable chemosensitivity potency, and improve the anti-tumor effects of chemotherapeutics in vivo. Therefore, didymin inclusion complex could provide a safe, effective, economical, and adjuvant drug for future treatment of chemoresistant cancers.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Glicosídeos/administração & dosagem , Glicosídeos/farmacologia , Tecnologia Farmacêutica/métodos , beta-Ciclodextrinas/química , Animais , Varredura Diferencial de Calorimetria , Flavonoides/farmacocinética , Glicosídeos/farmacocinética , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Masculino , Células PC12 , Ratos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
9.
Mater Sci Eng C Mater Biol Appl ; 104: 109942, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499951

RESUMO

Decellularized matrix (dECM) is isolated extracellular matrix of tissues from its original inhabiting cells, which has emerged as a promising natural biomaterial for tissue engineering, aiming at support, replacement or regeneration of damaged tissues. The dECM can be easily obtained from tissues/organs of various species by adequate decellularization methods, and mimics the structure and composition of the native extracellular matrix, providing a favorable cellular environment. In this review, we summarize the recent developments in the preparation of dECM materials, including decellularization, crosslinking and sterilization. Also, we cover the advances in the utilization of dECM biomaterials in regeneration medicine in pre-clinic and clinical trials. Moreover, we highlight those emerging medical benefits of dECM beyond tissue engineering, such as cell transplantation, in vitro/in vivo model and therapeutic cues delivery. With the advances in the preparation and broader application, the dECM biomaterials could become the gold scaffold and pharmaceutical excipients in medical sciences.


Assuntos
Materiais Biocompatíveis/química , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos , Animais , Humanos , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
10.
Transplantation ; 103(12): 2486-2496, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31365475

RESUMO

BACKGROUND: Islet transplantation is a promising option for the treatment of type 1 diabetes. However, the current lack of practical techniques for the isolated islets preservation still hampers the advancement of life-saving islet transplantation. Islet suffers from internal or external stimuli-induced oxidative stress and subsequent inflammation during preservation, which leads to disappointing outcomes regarding islet yield, survival, and function. Reactive oxygen species (ROS) overproduction is the primary cause of oxidative stress that induces islet loss and dysfunction. Thus, in this article, we hypothesized that an endogenous antioxidant, bilirubin, that could efficiently scavenge ROS and inhibit inflammatory reactions could be beneficial for islet preservation. METHODS: Herein, we studied the effect of bilirubin on the hypothermic preserved (4°C) islets and evaluate the islets viability, insulin secretory function, oxidative stress levels, and in vivo transplantation performance. RESULTS: Bilirubin could prevent cellular damages during short-term preservation and maintain the cocultured islets viability and function. The protective role of bilirubin is associated with its antioxidative ability, which dramatically increased the activities of antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and decreased the levels of ROS and malondialdehyde. Diabetic mice transplanted with bilirubin preserved islets were normoglycemic for 28 days, even overmatched the diabetic mouse transplanted with fresh islets. Mice receiving bilirubin cocultured islets required the least time to achieve normoglycemia among all groups and exhibited minimum inflammatory responses during the early transplantation stage. CONCLUSIONS: By utilizing bilirubin, we achieved highly viable and functional islets after hypothermic preservation to reverse diabetes in mice.


Assuntos
Bilirrubina/farmacologia , Diabetes Mellitus Experimental/cirurgia , Hipotermia Induzida/métodos , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/metabolismo , Preservação de Órgãos/métodos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Imuno-Histoquímica , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...