Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 11(11)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671876

RESUMO

Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease of wheat. Salicylic acid (SA) is involved in the resistance of wheat to F. graminearum. Cell wall mannoprotein (CWM) is known to trigger defense responses in plants, but its role in the pathogenicity of F. graminearum remains unclear. Here, we characterized FgCWM1 (FG05_11315), encoding a CWM in F. graminearum. FgCWM1 was highly expressed in wheat spikes by 24 h after initial inoculation and was upregulated by SA. Disruption of FgCWM1 (ΔFgCWM1) reduced mannose and protein accumulation in the fungal cell wall, especially under SA treatment, and resulted in defective fungal cell walls, leading to increased fungal sensitivity to SA. The positive role of FgCWM1 in mannose and protein accumulation was confirmed by its expression in Saccharomyces cerevisiae. Compared with wild type (WT), ΔFgCWM1 exhibited reduced pathogenicity toward wheat, but it produced the same amount of deoxynivalenol both in culture and in spikes. Complementation of ΔFgCWM1 with FgCWM1 restored the WT phenotype. Localization analyses revealed that FgCWM1 was distributed on the cell wall, consistent with its structural role. Thus, FgCWM1 encodes a CWM protein that plays an important role in the cell wall integrity and pathogenicity of F. graminearum.


Assuntos
Parede Celular/química , Parede Celular/genética , Resistência à Doença/genética , Fusarium/genética , Interações Hospedeiro-Patógeno/genética , Glicoproteínas de Membrana/genética , Virulência/genética , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Ácido Salicílico/química , Triticum/microbiologia
2.
New Phytol ; 224(2): 961-973, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31168798

RESUMO

De-domestication is a unique evolutionary process during which crops re-acquire wild-like traits to survive and persist in agricultural fields without the need for human cultivation. The re-acquisition of seed dispersal mechanisms is crucial for crop de-domestication. Common wheat is an important cereal crop worldwide. Tibetan semi-wild wheat is a potential de-domesticated common wheat subspecies. However, the crucial genes responsible for its brittle rachis trait have not been identified. Genetic mapping, functional analyses and phylogenetic analyses were completed to identify the gene associated with Qbr.sau-5A, which is a major locus for the brittle rachis trait of Tibetan semi-wild wheat. The cloned Qbr.sau-5A gene is a new Q allele (Qt ) with a 161-bp transposon insertion in exon 5. Although Qt is expressed normally, its encoded peptide lacks some key features of the APETALA2 family. The abnormal functions of Qt in developing wheat spikes result in brittle rachises. Phylogenetic and genotyping analyses confirmed that Qt originated from Q in common wheat and is naturally distributed only in Tibetan semi-wild wheat populations. The identification of Qt provides new evidence regarding the origin of Tibetan semi-wild wheat, and new insights into the re-acquisition of wild traits during crop de-domestication.


Assuntos
Elementos de DNA Transponíveis/genética , DNA de Plantas/genética , Mutagênese Insercional/genética , Triticum/genética , Triticum/fisiologia , Evolução Biológica , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas
3.
BMC Genomics ; 20(1): 390, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31109305

RESUMO

BACKGROUND: Phytohormones are key regulators of plant growth, development, and signalling networks involved in responses to diverse biotic and abiotic stresses. Transcriptional reference maps of hormone responses have been reported for several model plant species such as Arabidopsis thaliana, Oryza sativa, and Brachypodium distachyon. However, because of species differences and the complexity of the wheat genome, these transcriptome data are not appropriate reference material for wheat studies. RESULTS: We comprehensively analysed the transcriptomic responses in wheat spikes to seven phytohormones, including indole acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA), ethylene (ET), cytokinin (CK), salicylic acid (SA), and methyl jasmonic acid (MeJA). A total of 3386 genes were differentially expressed at 24 h after the hormone treatments. Furthermore, 22.7% of these genes exhibited overlapping transcriptional responses for at least two hormones, implying there is crosstalk among phytohormones. We subsequently identified genes with expression levels that were significantly and differentially induced by a specific phytohormone (i.e., hormone-specific responses). The data for these hormone-responsive genes were then compared with the transcriptome data for wheat spikes exposed to biotic (Fusarium head blight) and abiotic (water deficit) stresses. CONCLUSION: Our data were used to develop a transcriptional reference map of hormone responses in wheat spikes.


Assuntos
Reguladores de Crescimento de Plantas/farmacologia , Transcriptoma , Triticum/genética , Desidratação/genética , Desidratação/metabolismo , Flores/efeitos dos fármacos , Flores/genética , Flores/metabolismo , Fusarium , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma/efeitos dos fármacos , Triticum/efeitos dos fármacos , Triticum/metabolismo , Triticum/microbiologia
4.
Toxins (Basel) ; 11(2)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678154

RESUMO

Salicylic acid (SA) is a key defense hormone associated with wheat resistance against Fusarium head blight, which is a severe disease mainly caused by Fusarium graminearum. Although F. graminearum can metabolize SA, it remains unclear how this metabolic activity affects the wheat⁻F. graminearum interaction. In this study, we identified a salicylate hydroxylase gene (FG05_08116; FgNahG) in F. graminearum. This gene encodes a protein that catalyzes the conversion of SA to catechol. Additionally, FgNahG was widely distributed within hyphae. Disrupting the FgNahG gene (ΔFgNahG) led to enhanced sensitivity to SA, increased accumulation of SA in wheat spikes during the early infection stage and inhibited development of head blight symptoms. However, FgNahG did not affect mycotoxin production. Re-introducing a functional FgNahG gene into the ΔFgNahG mutant recovered the wild-type phenotype. Moreover, the expression of FgNahG in transgenic Arabidopsis thaliana decreased the SA concentration and the resistance of leaves to F. graminearum. These results indicate that the endogenous SA in wheat influences the resistance against F. graminearum. Furthermore, the capacity to metabolize SA is an important factor affecting the ability of F. graminearum to infect wheat plants.


Assuntos
Resistência à Doença , Proteínas Fúngicas , Fusarium , Oxigenases de Função Mista , Doenças das Plantas , Ácido Salicílico , Triticum/microbiologia , Arabidopsis/genética , Escherichia coli/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Fusarium/patogenicidade , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutação , Micélio/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo
5.
Sci Rep ; 8(1): 11928, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093727

RESUMO

Basis for the effects of nitrogen (N) on wheat grain storage proteins (GSPs) and on the establishment of processing quality are far from clear. The response of GSPs and processing quality parameters to four N levels of four common wheat cultivars were investigated at two sites over two growing seasons. Except gluten index (GI), processing quality parameters as well as GSPs quantities were remarkably improved by increasing N level. N level explained 4.2~59.2% and 10.4~80.0% variability in GSPs fractions and processing quality parameters, respectively. The amount of N remobilized from vegetative organs except spike was significantly increased when enhancing N application. GSPs fractions and processing quality parameters except GI were only highly and positively correlated with the amount of N remobilized from stem with sheath. N reassimilation in grain was remarkably strengthened by the elevated activity and expression level of glutamine synthetase. Transcriptome analysis showed the molecular mechanism of seeds in response to N levels during 10~35 days post anthesis. Collectively, we provided comprehensive understanding of N-responding mechanisms with respect to wheat processing quality from N source to GSPs biosynthesis at the agronomic, physiological and molecular levels, and screened candidate genes for quality breeding.


Assuntos
Indústria de Processamento de Alimentos/métodos , Nitrogênio/metabolismo , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Sementes/fisiologia , Triticum/fisiologia , China , Grão Comestível , Estudos de Associação Genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Transcriptoma
6.
Int J Mol Sci ; 19(8)2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103374

RESUMO

ATP-binding cassette (ABC) transporters hydrolyze ATP to transport a wide range of substrates. Fusarium graminearum is a major causal agent of Fusarium head blight, which is a severe disease in wheat worldwide. FgABCC9 (FG05_07325) encodes an ABC-C (ABC transporter family C) transporter in F. graminearum, which was highly expressed during the infection in wheat and was up-regulated by the plant defense hormone salicylic acid (SA) and the fungicide tebuconazole. The predicted tertiary structure of the FgABCC9 protein was consistent with the schematic of the ABC exporter. Deletion of FgABCC9 resulted in decreased mycelial growth, increased sensitivity to SA and tebuconazole, reduced accumulation of deoxynivalenol (DON), and less pathogenicity towards wheat. Re-introduction of a functional FgABCC9 gene into ΔFgABCC9 recovered the phenotypes of the wild type strain. Transgenic expression of FgABCC9 in Arabidopsis thaliana increased the accumulation of SA in its leaves without activating SA signaling, which suggests that FgABCC9 functions as an SA exporter. Taken together, FgABCC9 encodes an ABC exporter, which is critical for fungal exportation of SA, response to tebuconazole, mycelial growth, and pathogenicity towards wheat.


Assuntos
Farmacorresistência Fúngica/fisiologia , Proteínas Fúngicas/metabolismo , Fusarium/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Receptores de Sulfonilureias/metabolismo , Triticum/microbiologia , Antifúngicos/farmacologia , Arabidopsis/microbiologia , Proteínas Fúngicas/genética , Fusarium/genética , Micélio/genética , Receptores de Sulfonilureias/genética
7.
Genome ; 61(3): 201-208, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29401409

RESUMO

We evaluated the SGP-1 protein composition of 368 Chinese wheat landraces using SDS-PAGE. The SGP-D1 null type was identified in three accessions (Xiaoqingmang, Pushanbamai, and P119). An 18-bp deletion and 9-bp variation were found at the junction region of the 7th intron and 8th exon, leading to deletion of the intron-exon junction recognition site AG when aligned the 8261-bp DNA sequence of TaSSIIa-D in Pushanbamai with that of Chinese Spring. Four cDNA types with mis-spliced isoforms were subsequently detected through amplification of TaSSIIa-D cDNAs. Among these, nine type II cDNAs with a 16-bp deletion in the 8th exon were detected, indicating that the major transcriptional pattern of TaSSIIa in Pushanbamai is type II. In the type IV cDNA, a 97-bp sequence remains undeleted in the end of the 5th exon. The amylose content in Pushanbamai was significantly higher than that in all control lines under field conditions, which suggested that deletion of SGP-D1 has an efficient impact on amylose content. As the TaSSIIa gene plays an important role in regulating the content of amylose, it is anticipated that these natural variants of TaSSIIa-D will provide useful resources for quality improvement in wheat.


Assuntos
Processamento Alternativo , Proteínas de Plantas/genética , Sintase do Amido/genética , Triticum/genética , Amilose/metabolismo , Proteínas de Plantas/metabolismo , Sintase do Amido/deficiência , Sintase do Amido/metabolismo , Triticum/enzimologia
8.
G3 (Bethesda) ; 8(3): 771-778, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29358231

RESUMO

Spike density and processing quality are important traits in modern wheat production and are controlled by multiple gene loci. The associated genes have been intensively studied and new discoveries have been constantly reported during the past few decades. However, no gene playing a significant role in the development of these two traits has been identified. In the current study, a common wheat mutant with extremely compact spikes and good processing quality was isolated and characterized. A new allele (Qc1 ) of the Q gene (an important domestication gene) responsible for the mutant phenotype was cloned, and the molecular mechanism for the mutant phenotype was studied. Results revealed that Qc1 originated from a point mutation that interferes with the miRNA172-directed cleavage of Q transcripts, leading to its overexpression. It also reduces the longitudinal cell size of rachises, resulting in an increased spike density. Furthermore, Qc1 increases the number of vascular bundles, which suggests a higher efficiency in the transportation of assimilates in the spikes of the mutant than that of wild type. This accounts for the improved processing quality. The effects of Qc1 on spike density and wheat processing quality were confirmed by analyzing nine common wheat mutants possessing four different Qc alleles. These results deepen our understanding of the key roles of Q gene, and provide new insights for the potential application of Qc alleles in wheat quality breeding.


Assuntos
Alelos , Expressão Gênica , Proteínas de Plantas/genética , Característica Quantitativa Herdável , Triticum/genética , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , MicroRNAs/genética , Mutação , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Interferência de RNA
9.
Genome ; 60(12): 1068-1075, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28841403

RESUMO

As a primitive hexaploid wheat resource distributed only in Tibet, Tibetan semi-wild wheat (Triticum aestivum subsp. tibetanum Shao) possesses unique characteristics that could be exploited in wheat breeding programs. Its good root system could offer a stable platform for above-ground components. To detect possible excellent locus for root traits from Tibetan semi-wild wheat, we identified QTLs for root traits using a recombinant inbred line population derived from a cross between Tibetan semi-wild wheat Q1028 and Zhengmai 9023. A total of 15 QTLs on eight chromosomes were detected, including four major QTLs, QMrl.sau-7B, QTrl.sau-4B, QAd.sau-7A, and QSa.sau-4B. The phenotypic variation explained by each of these QTLs ranges from 5.67% to 16.68%. Positive alleles of six QTLs were derived from Q1028. Several novel QTLs for root traits were identified. In addition, significant correlations were detected amongst root traits and agronomic traits. Taken together, these results suggest that Tibetan semi-wild wheat and the newly identified novel QTLs could be useful in future breeding programs.


Assuntos
Locos de Características Quantitativas , Triticum/genética , Endogamia , Melhoramento Vegetal , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Característica Quantitativa Herdável , Plântula/genética , Plântula/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
10.
Front Plant Sci ; 8: 401, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28428791

RESUMO

Pre-harvest sprouting (PHS) is mainly caused by the breaking of seed dormancy in high rainfall regions, which leads to huge economic losses in wheat. In this study, we evaluated 717 Chinese wheat landraces for PHS resistance and carried out genome-wide association studies (GWAS) using to 9,740 DArT-seq and 178,803 SNP markers. Landraces were grown across six environments in China and germination testing of harvest-ripe grain was used to calculate the germination rate (GR) for each accession at each site. GR was highly correlated across all environments. A large number of landraces (194) displayed high levels of PHS resistance (i.e., mean GR < 0.20), which included nine white-grained accessions. Overall, white-grained accessions displayed a significantly higher mean GR (42.7-79.6%) compared to red-grained accessions (19.1-56.0%) across the six environments. Landraces from mesic growing zones in southern China showed higher levels of PHS resistance than those sourced from xeric areas in northern and north-western China. Three main quantitative trait loci (QTL) were detected by GWAS: one on 5D that appeared to be novel and two co-located with the grain color transcription factor Tamyb10 on 3A and 3D. An additional 32 grain color related QTL (GCR-QTL) were detected when the set of red-grained landraces were analyzed separately. GCR-QTL occurred at high frequencies in the red-grained accessions and a strong correlation was observed between the number of GCR-QTL and GR (R2 = 0.62). These additional factors could be critical for maintaining high levels of PHS resistance and represent targets for introgression into white-grained wheat cultivars. Further, investigation of the origin of haplotypes associated with the three main QTL revealed that favorable haplotypes for PHS resistance were more common in accessions from higher rainfall zones in China. Thus, a combination of natural and artificial selection likely resulted in landraces incorporating PHS resistance in China.

12.
Theor Appl Genet ; 130(6): 1321-1330, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28314934

RESUMO

KEY MESSAGE: A novel Wx-B1 allele was characterized; a transposon insertion resulted in the loss of its function, which is different from the previously reported gene silencing mechanisms at the Wx-B1 locus. The waxy protein composition of 53 Chinese wheat landraces was analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional gel electrophoresis; of these, 10 did not show the expression of Wx-A1 (four accession) or Wx-B1 (six accessions) protein. The results of molecular marker detection revealed that the Wx-B1 allele (Wx-B1n) showed normal expression, inconsistent with the findings of SDS-PAGE for the Xiaobaipi accession. Further cloning of the 9160-bp region covering the Wx-B1 coding region and 3'-downstream region revealed that a 2178-bp transposon fragment had been inserted at 2462 bp within the tenth exon of Wx-B1n ORF, leading to the absence of Wx-B1 protein. Sequence analysis indicated that the insertion possessed the structural features of invert repeat and target repeat elements, we deduced that it was a transposon. Further PCR analysis revealed that this fragment had moved, but not copied itself, from 3B chromosome to the current location in Wx-B1n. Therefore, the reason for the inactivation of Wx-B1n was considerably different from those for the inactivation of Wx-B1b, Wx-B1k, and Wx-B1m; to our knowledge, this kind of structural mutation has never been reported in Wx-B1 alleles. This novel allele is interesting, because it was not associated with the deletion of other quality-related genes included in the 67 kb region lost with the common null allele Wx-B1b. The null Wx-B1n might be useful for investigating gene inactivation and expression as well as for enriching the genetic resource pool for the modification of the amylose/amylopectin ratio, thereby improving wheat quality.


Assuntos
Elementos de DNA Transponíveis , Inativação Gênica , Sintase do Amido/genética , Triticum/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Passeio de Cromossomo , Clonagem Molecular , Genes de Plantas , Mutagênese Insercional , Fases de Leitura Aberta , Proteínas de Plantas/genética , Triticum/enzimologia
13.
Genome ; 60(3): 208-215, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28098486

RESUMO

Gene loss during the formation of hexaploid bread wheat has been repeatedly reported. However, our knowledge on genome-wide analysis of the genes present on a single subgenome (SSG) in bread wheat is still limited. In this study, by analysing the 'Chinese Spring' chromosome arm shotgun sequences together with high-confidence gene models, we detected 433 genes on a SSG. Greater gene loss was observed in A and D subgenomes compared with B subgenome. More than 79% of the orthologs for these SSG genes were detected in diploid and tetraploid relatives of hexaploid wheat. Unexpectedly, no bias in expression breadth or in the distribution patterns of GO (gene ontology) terms for these genes was detected among the high-confidence genes. Further, network and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses indicated that most of these genes were not functionally related to each other. Interestingly, 30.7% of these SSG genes were most highly expressed in root, showing biased distribution given the distribution of the whole high-confidence genes. Collectively, these results facilitate our understanding of the loss of the genes that were retained in a SSG during the formation of hexaploid wheat.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta , Raízes de Plantas/genética , Triticum/genética , Algoritmos , China , Diploide , Evolução Molecular , Genes de Plantas , Genótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Poliploidia , Análise de Sequência de RNA , Tetraploidia , Transcriptoma
14.
Plasmid ; 87-88: 58-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27615011

RESUMO

In this study, we designed and constructed a super twin T-DNA vector (pTRIDT313-g) containing two independent T-DNA cassettes-one for the selection gene Hyg and the other for the target gene Gus-to produce marker-free transgenic lines. The resulting vector was transformed into tobacco, and polymerase chain reaction (PCR) analysis showed four types of gene combinations in the T1 and T2 generations: Gus only, Hyg only, Gus+Hyg, and untransformed lines. The intermediate region from the T-DNA of the right border of Hyg to the left border of Gus in the Hyg and Gus lines was not amplified. Genome walking confirmed that the Hyg and Gus T-DNA cassettes were independently inserted in different regions of the tobacco genome. Thus, the two T-DNA cassettes were integrated randomly as independent loci into the tobacco genome. The results of reverse transcription-PCR indicated that Hyg could normally be expressed in the roots, stems, and leaves of transgenic lines, and the resistance test showed that all Hyg transgenic lines could grow in the presence of 50mg/L hygromycin. All Gus transgenic lines showed obvious blue coloration in enzyme activity tests, indicating that the Gus gene could be normally expressed in all the lines. Therefore, the super twin T-DNA vector (pTRIDT313-g) exhibits independent integration, heredity, and normal gene function from two T-DNA cassettes. This vector could be a useful and valuable tool in the production of marker-free transgenic lines.


Assuntos
Agrobacterium/fisiologia , DNA Bacteriano , Expressão Gênica , Vetores Genéticos/genética , Transformação Genética , Passeio de Cromossomo , Ordem dos Genes , Ligação Genética , Loci Gênicos , Mutagênese Insercional , Fenótipo , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/microbiologia
15.
Springerplus ; 5(1): 1552, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27652125

RESUMO

Mature embryo is an excellent explant for tissue culture as it is convenient to be obtained without limitation of growing seasons and development stages. However, regeneration ability of the calli from wheat mature embryos is limited, thus hindering its application. To identify genes associated with the tissue culture response (TCR) of wheat, QTLs for callus induction from mature embryos and callus regeneration were detected using a recombinant inbred lines (RILs) population derived from the cross between a synthetic hexaploid wheat genotype, SHW-L1 and a commercial cultivar Chuanmai 32. Three QTLs for callus rate were identified and they were located on chromosomes 1D, 5A, and 6D, respectively, with explained phenotypic variation ranging from 10.16 to 11.82 %. One QTL for differentiation rate was detected only with 10.96 % of the phenotypic variation explained. Two QTLs for emergence rate were identified and they were located on 3B and 4A, respectively, with 9.88 and 10.30 % of phenotypic variation. The results presented in this study with those reported previously indicated that group 1, 3, and 5 chromosomes are likely to play important roles in TCR of wheat.

16.
J Genet ; 95(3): 565-72, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27659326

RESUMO

The H⁺-pyrophosphatase (H⁺-PPase) gene plays an important role in maintaining intracellular proton gradients. Here, we characterized the full-length complementary DNA (cDNA) and DNA of the H⁺-PPase gene ScHP1 in rye (Secale cereale L. 'Qinling'). We determined the subcellular localization of this gene and predicted the corresponding protein structure. We analysed the evolutionary relationship between ScHP1 and H⁺-PPase genes in other species, and did real-time quantitative polymerase chain reaction to explore the expression patterns of ScHP1 in rye plants subjected to N, P and K deprivation and to cold, high-salt and drought stresses. ScHP1 cDNA included a 2289 bp open reading frame (ORF) encoding 762 amino acid residues with 14 transmembrane domains. The genomic ScHP1 DNA was 4354 bp and contained eight exons and seven introns. ScHP1 was highly homologous with other members of the H⁺-PPase gene family. When the full-length ORF was inserted into the expression vector pA7-YFP, the fluorescent microscopy revealed that ScHP1-YFP fusion protein was located in the plasma membrane. Rye plants that were subjected to N deprivation, cold and high-salt stresses, ScHP1 expression was higher in the leaves than roots. Conversely, plants subjected to P and K deprivation and drought stress, ScHP1 expression was higher in the roots than leaves. Under all the investigated stress conditions, expression of ScHP1 was lower in the stem than in the leaves and roots. Our results imply that ScHP1 functions under abiotic stress response.


Assuntos
Regulação da Expressão Gênica de Plantas , Pirofosfatase Inorgânica/genética , Proteínas de Plantas/genética , Prótons , Secale/genética , Estresse Fisiológico/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Temperatura Baixa , DNA Complementar/genética , DNA Complementar/metabolismo , Secas , Éxons , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Pirofosfatase Inorgânica/metabolismo , Íntrons , Modelos Moleculares , Nitrogênio/deficiência , Nitrogênio/farmacologia , Fases de Leitura Aberta , Fósforo/deficiência , Fósforo/farmacologia , Filogenia , Células Vegetais/efeitos dos fármacos , Células Vegetais/enzimologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Caules de Planta/efeitos dos fármacos , Caules de Planta/enzimologia , Caules de Planta/genética , Potássio/farmacologia , Secale/classificação , Secale/efeitos dos fármacos , Secale/enzimologia , Cloreto de Sódio/farmacologia
17.
Genome ; 59(7): 501-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27299732

RESUMO

ADP-glucose pyrophosphorylase (AGP), which consists of two large subunits (AGP-L) and two small subunits (AGP-S), controls the rate-limiting step in the starch biosynthetic pathway. In this study, a full-length open reading frame (ORF) of AGP-L gene (named as Agp2) in wheat and a series of Agp2 gene sequences in wheat relatives were isolated. The coding region of Agp2 contained 15 exons and 14 introns including a full-length ORF of 1566 nucleotides, and the deduced protein contained 522 amino acids (57.8 kDa). Generally, the phylogenetic tree of Agp2 indicated that sequences from A- and D-genome donor species were most similar to each other and sequences from B-genome donor species contained more variation. Starch accumulation and Agp2 expression in wheat grains reached their peak at 21 and 15 days post anthesis (DPA), respectively.


Assuntos
Glucose-1-Fosfato Adenililtransferase/genética , Triticum/enzimologia , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , DNA Complementar/química , DNA Complementar/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Glucose-1-Fosfato Adenililtransferase/biossíntese , Fases de Leitura Aberta , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Sementes/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Amido/biossíntese
18.
Genetica ; 144(3): 313-23, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27154345

RESUMO

Phosphoglucan phosphatases (Like-SEX4 1 and 2; LSF1 and LSF2) were reported to play roles in starch metabolism in leaves of Arabidopsis. In this study, we identified and mapped the LSF1 and LSF2 genes in barley (HvLSF1 and HvLSF2), characterized their gene and protein structures, predicted the cis-elements of their promoters, and analysed their expression patterns. HvLSF1 and HvLSF2 were mapped on the long arm of chromosome 1H (1HL) and 5H (5HL), respectively. Our results revealed varied exon-intron structures and conserved exon-intron junctions in both LSF1 and LSF2 from a range of analysed species. Alignment of protein sequences indicated that cTP and CT domains are much less varied than the functional domains (PDZ, DPS and CBM48). LSF2 was mainly expressed in anthers of barley and rice, and in leaf of Arabidopsis. LSF1 was mainly expressed in endosperm of barley and leaf of Arabidopsis and rice. The expression of LSF1 exhibited a diurnal pattern in rice only and that of LSF2 in both rice and Arabidopsis. Of the investigated stresses, only cold stress significantly reduced expression level of LSF1 and LSF2 in barley and LSF2 in Arabidopsis at late stages of the treatments. While heat treatment significantly decreased expression levels of LSF1 at middle stage (4 h) of a treatment in Arabidopsis only. The strong relationships detected between LSF2 and starch excess4 (SEX4), glucan, water dikinases or phosphoglucan, water dikinases were identified and discussed. Taken together, these results provide information of genetic manipulation of LSF1 and LSF2, especially in monocotyledon and further elucidate their regulatory mechanism in plant development.


Assuntos
Fosfatases de Especificidade Dupla/genética , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Proteínas de Plantas/genética , Mapeamento Cromossômico , Fosfatases de Especificidade Dupla/química , Perfilação da Expressão Gênica , Ordem dos Genes , Hordeum/classificação , Motivos de Nucleotídeos , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/química , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Estresse Fisiológico/genética
19.
Genome ; 58(8): 385-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26356308

RESUMO

Chromosome translocation is an important driving force in shaping genomes during evolution. Detailed knowledge of chromosome translocations in a given species and its close relatives should increase the efficiency and precision of chromosome engineering in crop improvement. To identify genes flanking the breakpoints of translocations and inversions as a step toward identifying breakpoints in bread wheat, we systematically analysed genes in the Brachypodium genome against wheat survey sequences and bin-mapped ESTs (expressed sequence tags) derived from the hexaploid wheat genotype 'Chinese Spring'. In addition to those well-known translocations between group 4, 5, and 7 chromosomes, this analysis identified genes flanking the three pericentric inversions on chromosomes 2B, 4B, and 5A. However, numerous chromosomal rearrangements reported in early studies could not be confirmed. The genes flanking the breakpoints reported in this study are valuable for isolating these breakpoints.


Assuntos
Pontos de Quebra do Cromossomo , Inversão Cromossômica , Cromossomos de Plantas , Genes de Plantas , Triticum/genética , Brachypodium/genética , Mapeamento Cromossômico , Evolução Molecular , Etiquetas de Sequências Expressas , Genoma de Planta , Genótipo , Translocação Genética
20.
PLoS One ; 9(12): e114066, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25474652

RESUMO

Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao) is a semi-wild hexaploid wheat resource that is only naturally distributed in the Qinghai-Tibet Plateau. Brittle rachis and hard threshing are two important characters of Tibetan semi-wild wheat. A whole-genome linkage map of T. aestivum ssp. tibetanum was constructed using a recombinant inbred line population (Q1028×ZM9023) with 186 lines, 564 diversity array technology markers, and 117 simple sequence repeat markers. Phenotypic data on brittle rachis and threshability, as two quantitative traits, were evaluated on the basis of the number of average spike rachis fragments per spike and percent threshability in 2012 and 2013, respectively. Quantitative trait locus (QTL) mapping performed using inclusive composite interval mapping analysis clearly identified four QTLs for brittle rachis and three QTLs for threshability. However, three loci on 2DS, 2DL, and 5AL showed pleiotropism for brittle rachis and threshability; they respectively explained 5.3%, 18.6%, and 18.6% of phenotypic variation for brittle rachis and 17.4%, 13.2%, and 35.2% of phenotypic variation for threshability. A locus on 3DS showed an independent effect on brittle rachis, which explained 38.7% of the phenotypic variation. The loci on 2DS and 3DS probably represented the effect of Tg and Br1, respectively. The locus on 5AL was in very close proximity to the Q gene, but was different from the predicted q in Tibetan semi-wild wheat. To our knowledge, the locus on 2DL has never been reported in common wheat but was prominent in T. aestivum ssp. tibetanum accession Q1028. It remarkably interacted with the locus on 5AL to affect brittle rachis. Several major loci for brittle rachis and threshability were identified in Tibetan semi-wild wheat, improving the understanding of these two characters and suggesting the occurrence of special evolution in Tibetan semi-wild wheat.


Assuntos
Mapeamento Cromossômico , Genômica , Fenômenos Mecânicos , Locos de Características Quantitativas/genética , Triticum/anatomia & histologia , Triticum/genética , Epistasia Genética/genética , Repetições de Microssatélites/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA