Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Stem Cells Regen Med ; 18(1): 11-20, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003656

RESUMO

Orthobiologics never cease to cause popularity within the medical science field, distinctly in regenerative medicine. Recently, adipose tissue has been an object of interest for many researchers and medical experts due to the fact that it represents a novel and potential cell source for tissue engineering and regenerative medicine purposes. Stromal vascular fraction (SVF), for instance, which is an adipose tissue-derivative, has generated optimistic results in many scenarios. Its biological potential can be harnessed and administered into injured tissues, particularly areas in which standard healing is disrupted. This is a typical feature of osteoarthritis (OA), a common degenerative joint disease which is outlined by persistent inflammation and destruction of surrounding tissues. SVF is known to carry a large amount of stem and progenitor cells, which are able to perform self-renewal, differentiation, and proliferation. Furthermore, they also secrete several cytokines and several growth factors, effectively sustaining immune modulatory effects and halting the escalated pro-inflammatory status of OA. Although SVF has shown interesting results throughout the medical community, additional research is still highly desirable in order to further elucidate its potential regarding musculoskeletal disorders, especially OA.

2.
Bioengineering (Basel) ; 9(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35621495

RESUMO

This study investigates the role of Sygen® in diabetic peripheral neuropathy, a severe disease that affects the peripheral nervous system in diabetic individuals. This disorder often impacts the lower limbs, causing significant discomfort and, if left untreated, progresses into more serious conditions involving chronic ulcers and even amputation in many cases. Although there are management strategies available, peripheral neuropathies are difficult to treat as they often present multiple causes, especially due to metabolic dysfunction in diabetic individuals. Gangliosides, however, have long been studied and appreciated for their role in neurological diseases. The monosialotetrahexosylganglioside (GM1) ganglioside, popularly known as Sygen, provides beneficial effects such as enhanced neuritic sprouting, neurotrophism, neuroprotection, anti-apoptosis, and anti-excitotoxic activity, being particularly useful in the treatment of neurological complications that arise from diabetes. This product mimics the roles displayed by neurotrophins, improving neuronal function and immunomodulation by attenuating exacerbated inflammation in neurons. Furthermore, Sygen assists in axonal stabilization and keeps nodal and paranodal regions of myelin fibers organized. This maintains an adequate propagation of action potentials and restores standard peripheral nerve function. Given the multifactorial nature of this complicated disorder, medical practitioners must carefully screen the patient to avoid confusion and misdiagnosis. There are several studies analyzing the role of Sygen in neurological disorders. However, the medical literature still needs more robust investigations such as randomized clinical trials regarding the administration of this compound for diabetic peripheral neuropathies, specifically.

3.
Adv Redox Res ; 3: 100015, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35425932

RESUMO

Ever since its emergence, the highly transmissible and debilitating coronavirus disease spread at an incredibly fast rate, causing global devastation in a matter of months. SARS-CoV-2, the novel coronavirus responsible for COVID-19, infects hosts after binding to ACE2 receptors present on cells from many structures pertaining to the respiratory, cardiac, hematological, neurological, renal and gastrointestinal systems. COVID-19, however, appears to trigger a severe cytokine storm syndrome in pulmonary structures, resulting in oxidative stress, exacerbated inflammation and alveolar injury. Due to the recent nature of this disease no treatments have shown complete efficacy and safety. More recently, however, researchers have begun to direct some attention towards GSH and NAC. These natural antioxidants play an essential role in several biological processes in the body, especially the maintenance of the redox equilibrium. In fact, many diseases appear to be strongly related to severe oxidative stress and deficiency of endogenous GSH. The high ratios of ROS over GSH, in particular, appear to reflect severity of symptoms and prolonged hospitalization of COVID-19 patients. This imbalance interferes with the body's ability to detoxify the cellular microenvironment, fold proteins, replenish antioxidant levels, maintain healthy immune responses and even modulate apoptotic events. Oral administration of GSH and NAC is convenient and safe, but they are susceptible to degradation in the digestive tract. Considering this drawback, nebulization of GSH and NAC as an adjuvant therapy may therefore be a viable alternative for the management of the early stages of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA