Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 630(8017): 596-608, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898293

RESUMO

The evolution of the modern human brain was accompanied by distinct molecular and cellular specializations, which underpin our diverse cognitive abilities but also increase our susceptibility to neurological diseases. These features, some specific to humans and others shared with related species, manifest during different stages of brain development. In this multi-stage process, neural stem cells proliferate to produce a large and diverse progenitor pool, giving rise to excitatory or inhibitory neurons that integrate into circuits during further maturation. This process unfolds over varying time scales across species and has progressively become slower in the human lineage, with differences in tempo correlating with differences in brain size, cell number and diversity, and connectivity. Here we introduce the terms 'bradychrony' and 'tachycrony' to describe slowed and accelerated developmental tempos, respectively. We review how recent technical advances across disciplines, including advanced engineering of in vitro models, functional comparative genetics and high-throughput single-cell profiling, are leading to a deeper understanding of how specializations of the human brain arise during bradychronic neurodevelopment. Emerging insights point to a central role for genetics, gene-regulatory networks, cellular innovations and developmental tempo, which together contribute to the establishment of human specializations during various stages of neurodevelopment and at different points in evolution.


Assuntos
Evolução Biológica , Encéfalo , Humanos , Encéfalo/citologia , Encéfalo/fisiologia , Encéfalo/crescimento & desenvolvimento , Animais , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Fatores de Tempo , Neurônios/citologia , Neurônios/fisiologia , Análise de Célula Única , Redes Reguladoras de Genes
2.
Animals (Basel) ; 14(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891588

RESUMO

The documentation, preservation and rescue of biological diversity increasingly uses living biological samples. Persistent associations between species, biosamples, such as tissues and cell lines, and the accompanying data are indispensable for using, exchanging and benefiting from these valuable materials. Explicit authentication of such biosamples by assigning unique and robust identifiers is therefore required to allow for unambiguous referencing, avoid identification conflicts and maintain reproducibility in research. A predefined nomenclature based on uniform rules would facilitate this process. However, such a nomenclature is currently lacking for animal biological material. We here present a first, standardized, human-readable nomenclature design, which is sufficient to generate unique and stable identifying names for animal cellular material with a focus on wildlife species. A species-specific human- and machine-readable syntax is included in the proposed standard naming scheme, allowing for the traceability of donated material and cultured cells, as well as data FAIRification. Only when it is consistently applied in the public domain, as publications and inter-institutional samples and data are exchanged, distributed and stored centrally, can the risks of misidentification and loss of traceability be mitigated. This innovative globally applicable identification system provides a standard for a sustainable structure for the long-term storage of animal bio-samples in cryobanks and hence facilitates current as well as future species conservation and biomedical research.

3.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370637

RESUMO

Microelectrode array (MEA) recordings are commonly used to compare firing and burst rates in neuronal cultures. MEA recordings can also reveal microscale functional connectivity, topology, and network dynamics-patterns seen in brain networks across spatial scales. Network topology is frequently characterized in neuroimaging with graph theoretical metrics. However, few computational tools exist for analyzing microscale functional brain networks from MEA recordings. Here, we present a MATLAB MEA network analysis pipeline (MEA-NAP) for raw voltage time-series acquired from single- or multi-well MEAs. Applications to 3D human cerebral organoids or 2D human-derived or murine cultures reveal differences in network development, including topology, node cartography, and dimensionality. MEA-NAP incorporates multi-unit template-based spike detection, probabilistic thresholding for determining significant functional connections, and normalization techniques for comparing networks. MEA-NAP can identify network-level effects of pharmacologic perturbation and/or disease-causing mutations and, thus, can provide a translational platform for revealing mechanistic insights and screening new therapeutic approaches.

6.
Cell Stem Cell ; 30(10): 1351-1367.e10, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802039

RESUMO

Progression through fate decisions determines cellular composition and tissue architecture, but how that same architecture may impact cell fate is less clear. We took advantage of organoids as a tractable model to interrogate this interaction of form and fate. Screening methodological variations revealed that common protocol adjustments impacted various aspects of morphology, from macrostructure to tissue architecture. We examined the impact of morphological perturbations on cell fate through integrated single nuclear RNA sequencing (snRNA-seq) and spatial transcriptomics. Regardless of the specific protocol, organoids with more complex morphology better mimicked in vivo human fetal brain development. Organoids with perturbed tissue architecture displayed aberrant temporal progression, with cells being intermingled in both space and time. Finally, encapsulation to impart a simplified morphology led to disrupted tissue cytoarchitecture and a similar abnormal maturational timing. These data demonstrate that cells of the developing brain require proper spatial coordinates to undergo correct temporal progression.


Assuntos
Encéfalo , Organoides , Humanos , Diferenciação Celular , Análise de Sequência de RNA
7.
Stem Cell Reports ; 18(9): 1744-1752, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37703820

RESUMO

The laboratory culture of human stem cells seeks to capture a cellular state as an in vitro surrogate of a biological system. For the results and outputs from this research to be accurate, meaningful, and durable, standards that ensure reproducibility and reliability of the data should be applied. Although such standards have been previously proposed for repositories and distribution centers, no widely accepted best practices exist for laboratory research with human pluripotent and tissue stem cells. To fill that void, the International Society for Stem Cell Research has developed a set of recommendations, including reporting criteria, for scientists in basic research laboratories. These criteria are designed to be technically and financially feasible and, when implemented, enhance the reproducibility and rigor of stem cell research.


Assuntos
Pesquisa com Células-Tronco , Humanos , Reprodutibilidade dos Testes
9.
Nat Genet ; 55(9): 1483-1493, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37592024

RESUMO

Our understanding of the genetics of the human cerebral cortex is limited both in terms of the diversity and the anatomical granularity of brain structural phenotypes. Here we conducted a genome-wide association meta-analysis of 13 structural and diffusion magnetic resonance imaging-derived cortical phenotypes, measured globally and at 180 bilaterally averaged regions in 36,663 individuals and identified 4,349 experiment-wide significant loci. These phenotypes include cortical thickness, surface area, gray matter volume, measures of folding, neurite density and water diffusion. We identified four genetic latent structures and causal relationships between surface area and some measures of cortical folding. These latent structures partly relate to different underlying gene expression trajectories during development and are enriched for different cell types. We also identified differential enrichment for neurodevelopmental and constrained genes and demonstrate that common genetic variants associated with cortical expansion are associated with cephalic disorders. Finally, we identified complex interphenotype and inter-regional genetic relationships among the 13 phenotypes, reflecting the developmental differences among them. Together, these analyses identify distinct genetic organizational principles of the cortex and their correlates with neurodevelopment.


Assuntos
Córtex Cerebral , Estudo de Associação Genômica Ampla , Humanos , Córtex Cerebral/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Neuroimagem , Fenótipo
11.
Nat Commun ; 13(1): 7002, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385105

RESUMO

Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology.


Assuntos
Proteína de Ligação a CREB , Proteínas de Choque Térmico , Transtornos do Neurodesenvolvimento , Síndrome de Rubinstein-Taybi , Fatores de Transcrição , Humanos , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Histonas/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo
12.
Ann N Y Acad Sci ; 1518(1): 196-208, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36177906

RESUMO

Complex three-dimensional in vitro organ-like models, or organoids, offer a unique biological tool with distinct advantages over two-dimensional cell culture systems, which can be too simplistic, and animal models, which can be too complex and may fail to recapitulate human physiology and pathology. Significant progress has been made in driving stem cells to differentiate into different organoid types, though several challenges remain. For example, many organoid models suffer from high heterogeneity, and it can be difficult to fully incorporate the complexity of in vivo tissue and organ development to faithfully reproduce human biology. Successfully addressing such limitations would increase the viability of organoids as models for drug development and preclinical testing. On April 3-6, 2022, experts in organoid development and biology convened at the Keystone Symposium "Organoids as Tools for Fundamental Discovery and Translation" to discuss recent advances and insights from this relatively new model system into human development and disease.


Assuntos
Modelos Biológicos , Organoides , Animais , Humanos , Organoides/metabolismo , Células-Tronco , Modelos Animais
13.
Nature ; 609(7929): 907-910, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36171373

RESUMO

Self-organizing three-dimensional cellular models derived from human pluripotent stem cells or primary tissue have great potential to provide insights into how the human nervous system develops, what makes it unique and how disorders of the nervous system arise, progress and could be treated. Here, to facilitate progress and improve communication with the scientific community and the public, we clarify and provide a basic framework for the nomenclature of human multicellular models of nervous system development and disease, including organoids, assembloids and transplants.


Assuntos
Consenso , Sistema Nervoso , Organoides , Terminologia como Assunto , Humanos , Modelos Biológicos , Sistema Nervoso/citologia , Sistema Nervoso/patologia , Organoides/citologia , Organoides/patologia , Células-Tronco Pluripotentes/citologia
14.
Cell Stem Cell ; 29(6): 879-881, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35659874

RESUMO

Cell Stem Cell was launched in 2007, and this year marks its 15th anniversary. To recognize this occasion, we asked six advisory board members to reflect on inspiring discoveries reported in Cell Stem Cell and how these breakthroughs connect to their vision for the future of the field.


Assuntos
Aniversários e Eventos Especiais
15.
Nature ; 602(7895): 112-116, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35046577

RESUMO

The biological basis of male-female brain differences has been difficult to elucidate in humans. The most notable morphological difference is size, with male individuals having on average a larger brain than female individuals1,2, but a mechanistic understanding of how this difference arises remains unknown. Here we use brain organoids3 to show that although sex chromosomal complement has no observable effect on neurogenesis, sex steroids-namely androgens-lead to increased proliferation of cortical progenitors and an increased neurogenic pool. Transcriptomic analysis and functional studies demonstrate downstream effects on histone deacetylase activity and the mTOR pathway. Finally, we show that androgens specifically increase the neurogenic output of excitatory neuronal progenitors, whereas inhibitory neuronal progenitors are not increased. These findings reveal a role for androgens in regulating the number of excitatory neurons and represent a step towards understanding the origin of sex-related brain differences in humans.


Assuntos
Androgênios/farmacologia , Encéfalo/citologia , Excitabilidade Cortical/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Organoides/citologia , Organoides/efeitos dos fármacos , Caracteres Sexuais , Potenciais de Ação/efeitos dos fármacos , Androgênios/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/metabolismo , Contagem de Células , Feminino , Perfilação da Expressão Gênica , Histona Desacetilases/genética , Humanos , Masculino , Inibição Neural/efeitos dos fármacos , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Organoides/enzimologia , Organoides/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
16.
Dev Cell ; 56(23): 3185-3191, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34875224

RESUMO

In our 20th anniversary year, we reflect on how fields have changed since our first issue and here look to the future. In this collection of Voices, our writers speculate on the future: in terms of philosophy, cell states, cell processes, and then how to model cell systems.


Assuntos
Biologia Celular , Biologia do Desenvolvimento , Publicações Periódicas como Assunto/estatística & dados numéricos , Humanos , Fatores de Tempo
17.
Elife ; 102021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34698018

RESUMO

During brain development, axons must extend over great distances in a relatively short amount of time. How the subcellular architecture of the growing axon sustains the requirements for such rapid build-up of cellular constituents has remained elusive. Human axons have been particularly poorly accessible to imaging at high resolution in a near-native context. Here, we present a method that combines cryo-correlative light microscopy and electron tomography with human cerebral organoid technology to visualize growing axon tracts. Our data reveal a wealth of structural details on the arrangement of macromolecules, cytoskeletal components, and organelles in elongating axon shafts. In particular, the intricate shape of the endoplasmic reticulum is consistent with its role in fulfilling the high demand for lipid biosynthesis to support growth. Furthermore, the scarcity of ribosomes within the growing shaft suggests limited translational competence during expansion of this compartment. These findings establish our approach as a powerful resource for investigating the ultrastructure of defined neuronal compartments.


Assuntos
Axônios/ultraestrutura , Tomografia com Microscopia Eletrônica , Organoides/citologia , Encéfalo/citologia , Encéfalo/ultraestrutura , Microscopia Crioeletrônica , Células HeLa , Humanos , Substâncias Macromoleculares/metabolismo , Microscopia , Microscopia de Fluorescência , Organoides/ultraestrutura
18.
Cell ; 184(17): 4377-4379, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34416145

RESUMO

Greater understanding of the events preceding neurodegeneration is needed to design effective preventive and therapeutic strategies. In this issue of Cell, Bowles et al. (2021) report cerebral organoids that reveal early events in frontotemporal dementia pathogenesis due to mutations in microtubule-associated protein tau (MAPT), shedding light on a novel mechanism involving abnormal splicing and glutamate signaling.


Assuntos
Demência Frontotemporal , Organoides , Humanos , Mutação , Proteínas tau/genética
19.
Stem Cells ; 39(12): 1569-1578, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34431581

RESUMO

Schizophrenia (SCZ) is a severe brain disorder, characterized by psychotic, negative, and cognitive symptoms, affecting 1% of the population worldwide. The precise etiology of SCZ is still unknown; however, SCZ has a high heritability and is associated with genetic, environmental, and social risk factors. Even though the genetic contribution is indisputable, the discrepancies between transcriptomics and proteomics in brain tissues are consistently challenging the field to decipher the disease pathology. Here we provide an overview of the state of the art of neuronal two-dimensional and three-dimensional model systems that can be combined with proteomics analyses to decipher specific brain pathology and detection of alternative entry points for drug development.


Assuntos
Esquizofrenia , Humanos , Modelos Biológicos , Neurônios , Proteômica , Esquizofrenia/genética , Transcriptoma
20.
Curr Opin Cell Biol ; 73: 41-49, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34182208

RESUMO

The choroid plexus is central to normal brain function by secreting cerebrospinal fluid and dynamically regulating its composition throughout development and homoeostasis. Much of our current understanding of this region of the brain comes from studies in animal models. These fundamental studies have shed light on choroid plexus mechanisms of secretion, barrier function and homoeostatic regulation. However, how these specific mechanisms are regulated in the human choroid plexus is much less understood, due to ethical and technical limitations. A number of recent breakthroughs have enabled a new range of techniques and tools for functional characterisation of choroid plexus development and physiology. With the advance of new technologies such as in vivo imaging, single-cell transcriptomics and in vitro three-dimensional cultures we are now able to address a number of outstanding questions in choroid plexus biology. Here, we discuss some of these recent breakthroughs and we focus in particular on how in vitro models can be a powerful tool to study human cerebrospinal fluid secretion and barrier function.


Assuntos
Encéfalo , Plexo Corióideo , Animais , Transporte Biológico , Homeostase , Humanos , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...