Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 21(1): 152-163, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289197

RESUMO

Anthropogenic nitrate contamination is a serious problem in many natural environments. Nitrate removal by microbial action is dependent on the metal molybdenum (Mo), which is required by nitrate reductase for denitrification and dissimilatory nitrate reduction to ammonium. The soluble form of Mo, molybdate (MoO4 2- ), is incorporated into and adsorbed by iron (Fe) and aluminium (Al) (oxy) hydroxide minerals. Herein we used Oak Ridge Reservation (ORR) as a model nitrate-contaminated acidic environment to investigate whether the formation of Fe- and Al-precipitates could impede microbial nitrate removal by depleting Mo. We demonstrate that Fe and Al mineral formation that occurs as the pH of acidic synthetic groundwater is increased, decreases soluble Mo to low picomolar concentrations, a process proposed to mimic environmental diffusion of acidic contaminated groundwater. Analysis of ORR sediments revealed recalcitrant Mo in the contaminated core that co-occurred with Fe and Al, consistent with Mo scavenging by Fe/Al precipitates. Nitrate removal by ORR isolate Pseudomonas fluorescens N2A2 is virtually abolished by Fe/Al precipitate-induced Mo depletion. The depletion of naturally occurring Mo in nitrate- and Fe/Al-contaminated acidic environments like ORR or acid mine drainage sites has the potential to impede microbial-based nitrate reduction thereby extending the duration of nitrate in the environment.


Assuntos
Alumínio/química , Meio Ambiente , Ferro/química , Molibdênio/química , Ciclo do Nitrogênio , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Poluentes Ambientais/farmacologia , Sedimentos Geológicos/química , Água Subterrânea/química , Microbiota/efeitos dos fármacos , Molibdênio/metabolismo , Molibdênio/farmacologia , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/metabolismo
2.
Nucleic Acids Res ; 45(17): 9990-10001, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973467

RESUMO

Iron is required for key metabolic processes but is toxic in excess. This circumstance forces organisms across the tree of life to tightly regulate iron homeostasis. In hypersaline lakes dominated by archaeal species, iron levels are extremely low and subject to environmental change; however, mechanisms regulating iron homeostasis in archaea remain unclear. In previous work, we demonstrated that two transcription factors (TFs), Idr1 and Idr2, collaboratively regulate aspects of iron homeostasis in the model species Halobacterium salinarum. Here we show that Idr1 and Idr2 are part of an extended regulatory network of four TFs of the bacterial DtxR family that maintains intracellular iron balance. We demonstrate that each TF directly regulates at least one of the other DtxR TFs at the level of transcription. Dynamical modeling revealed interlocking positive feedback loop architecture, which exhibits bistable or oscillatory network dynamics depending on iron availability. TF knockout mutant phenotypes are consistent with model predictions. Together, our results support that this network regulates iron homeostasis despite variation in extracellular iron levels, consistent with dynamical properties of interlocking feedback architecture in eukaryotes. These results suggest that archaea use bacterial-type TFs in a eukaryotic regulatory network topology to adapt to harsh environments.


Assuntos
Proteínas Arqueais/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica em Archaea , Redes Reguladoras de Genes , Halobacterium salinarum/genética , Ferro/metabolismo , Proteínas Arqueais/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Halobacterium salinarum/metabolismo , Homeostase/genética , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica
3.
Front Microbiol ; 8: 1529, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848534

RESUMO

Chromium and uranium are highly toxic metals that contaminate many natural environments. We investigated their mechanisms of toxicity under anaerobic conditions using nitrate-reducing Pseudomonas stutzeri RCH2, which was originally isolated from a chromium-contaminated aquifer. A random barcode transposon site sequencing library of RCH2 was grown in the presence of the chromate oxyanion (Cr[VI][Formula: see text]) or uranyl oxycation (U[VI][Formula: see text]). Strains lacking genes required for a functional nitrate reductase had decreased fitness as both metals interacted with heme-containing enzymes required for the later steps in the denitrification pathway after nitrate is reduced to nitrite. Cr[VI]-resistance also required genes in the homologous recombination and nucleotide excision DNA repair pathways, showing that DNA is a target of Cr[VI] even under anaerobic conditions. The reduced thiol pool was also identified as a target of Cr[VI] toxicity and psest_2088, a gene of previously unknown function, was shown to have a role in the reduction of sulfite to sulfide. U[VI] resistance mechanisms involved exopolysaccharide synthesis and the universal stress protein UspA. As the first genome-wide fitness analysis of Cr[VI] and U[VI] toxicity under anaerobic conditions, this study provides new insight into the impact of Cr[VI] and U[VI] on an environmental isolate from a chromium contaminated site, as well as into the role of a ubiquitous protein, Psest_2088.

4.
Environ Sci Technol ; 51(5): 2879-2889, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28112946

RESUMO

Temporal variability complicates testing the influences of environmental variability on microbial community structure and thus function. An in-field bioreactor system was developed to assess oxic versus anoxic manipulations on in situ groundwater communities. Each sample was sequenced (16S SSU rRNA genes, average 10,000 reads), and biogeochemical parameters are monitored by quantifying 53 metals, 12 organic acids, 14 anions, and 3 sugars. Changes in dissolved oxygen (DO), pH, and other variables were similar across bioreactors. Sequencing revealed a complex community that fluctuated in-step with the groundwater community and responded to DO. This also directly influenced the pH, and so the biotic impacts of DO and pH shifts are correlated. A null model demonstrated that bioreactor communities were driven in part not only by experimental conditions but also by stochastic variability and did not accurately capture alterations in diversity during perturbations. We identified two groups of abundant OTUs important to this system; one was abundant in high DO and pH and contained heterotrophs and oxidizers of iron, nitrite, and ammonium, whereas the other was abundant in low DO with the capability to reduce nitrate. In-field bioreactors are a powerful tool for capturing natural microbial community responses to alterations in geochemical factors beyond the bulk phase.


Assuntos
Bactérias/genética , Reatores Biológicos , Água Subterrânea/química , Nitritos , RNA Ribossômico 16S/genética
5.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913415

RESUMO

Cell suspensions of Pelosinus sp. strain UFO1 were previously shown, using spectroscopic analysis, to sequester uranium as U(IV) complexed with carboxyl and phosphoryl group ligands on proteins. The goal of our present study was to characterize the proteins involved in uranium binding. Virtually all of the uranium in UFO1 cells was associated with a heterodimeric protein, which was termed the uranium-binding complex (UBC). The UBC was composed of two S-layer domain proteins encoded by UFO1_4202 and UFO1_4203. Samples of UBC purified from the membrane fraction contained 3.3 U atoms/heterodimer, but significant amounts of phosphate were not detected. The UBC had an estimated molecular mass by gel filtration chromatography of 15 MDa, and it was proposed to contain 150 heterodimers (UFO1_4203 and UFO1_4202) and about 500 uranium atoms. The UBC was also the dominant extracellular protein, but when purified from the growth medium, it contained only 0.3 U atoms/heterodimer. The two genes encoding the UBC were among the most highly expressed genes within the UFO1 genome, and their expressions were unchanged by the presence or absence of uranium. Therefore, the UBC appears to be constitutively expressed and is the first line of defense against uranium, including by secretion into the extracellular medium. Although S-layer proteins were previously shown to bind U(VI), here we showed that U(IV) binds to S-layer proteins, we identified the proteins involved, and we quantitated the amount of uranium bound. IMPORTANCE: Widespread uranium contamination from industrial sources poses hazards to human health and to the environment. Herein, we identified a highly abundant uranium-binding complex (UBC) from Pelosinus sp. strain UFO1. The complex makes up the primary protein component of the S-layer of strain UFO1 and binds 3.3 atoms of U(IV) per heterodimer. While other bacteria have been shown to bind U(VI) on their S-layer, we demonstrate here an example of U(IV) bound by an S-layer complex. The UBC provides a potential tool for the microbiological sequestration of uranium for the cleaning of contaminated environments.


Assuntos
Biodegradação Ambiental , Firmicutes/metabolismo , Glicoproteínas de Membrana/metabolismo , Poluentes Radioativos do Solo/metabolismo , Urânio/metabolismo , Poluição Ambiental , Firmicutes/crescimento & desenvolvimento , Ligação Proteica/fisiologia
6.
Appl Environ Microbiol ; 82(19): 6046-56, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474723

RESUMO

UNLABELLED: Metal ion transport systems have been studied extensively, but the specificity of a given transporter is often unclear from amino acid sequence data alone. In this study, predicted Cu(2+) and Zn(2+) resistance systems in Pseudomonas stutzeri strain RCH2 are compared with those experimentally implicated in Cu(2+) and Zn(2+) resistance, as determined by using a DNA-barcoded transposon mutant library. Mutant fitness data obtained under denitrifying conditions are combined with regulon predictions to yield a much more comprehensive picture of Cu(2+) and Zn(2+) resistance in strain RCH2. The results not only considerably expand what is known about well-established metal ion exporters (CzcCBA, CzcD, and CusCBA) and their accessory proteins (CzcI and CusF), they also reveal that isolates with mutations in some predicted Cu(2+) resistance systems do not show decreased fitness relative to the wild type when exposed to Cu(2+) In addition, new genes are identified that have no known connection to Zn(2+) (corB, corC, Psest_3226, Psest_3322, and Psest_0618) or Cu(2+) resistance (Mrp antiporter subunit gene, Psest_2850, and Psest_0584) but are crucial for resistance to these metal cations. Growth of individual deletion mutants lacking corB, corC, Psest_3226, or Psest_3322 confirmed the observed Zn-dependent phenotypes. Notably, to our knowledge, this is the first time a bacterial homolog of TMEM165, a human gene responsible for a congenital glycosylation disorder, has been deleted and the resulting strain characterized. Finally, the fitness values indicate Cu(2+)- and Zn(2+)-based inhibition of nitrite reductase and interference with molybdenum cofactor biosynthesis for nitrate reductase. These results extend the current understanding of Cu(2+) and Zn(2+) efflux and resistance and their effects on denitrifying metabolism. IMPORTANCE: In this study, genome-wide mutant fitness data in P. stutzeri RCH2 combined with regulon predictions identify several proteins of unknown function that are involved in resisting zinc and copper toxicity. For zinc, these include a member of the UPF0016 protein family that was previously implicated in Ca(2+)/H(+) antiport and a human congenital glycosylation disorder, CorB and CorC, which were previously linked to Mg(2+) transport, and Psest_3322 and Psest_0618, two proteins with no characterized homologs. Experiments using mutants lacking Psest_3226, Psest_3322, corB, corC, or czcI verified their proposed functions, which will enable future studies of these little-characterized zinc resistance determinants. Likewise, Psest_2850, annotated as an ion antiporter subunit, and the conserved hypothetical protein Psest_0584 are implicated in copper resistance. Physiological connections between previous studies and phenotypes presented here are discussed. Functional and mechanistic understanding of transport proteins improves the understanding of systems in which members of the same protein family, including those in humans, can have different functions.


Assuntos
Cobre/metabolismo , Aptidão Genética , Pseudomonas stutzeri/fisiologia , Zinco/metabolismo , Cátions/metabolismo , Cobre/farmacologia , Mutação , Pseudomonas stutzeri/efeitos dos fármacos , Pseudomonas stutzeri/genética , Zinco/farmacologia
7.
Genome Announc ; 4(3)2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27151784

RESUMO

Clostridium paradoxum strain JW-YL-7 is a moderately thermophilic anaerobic alkaliphile isolated from the municipal sewage treatment plant in Athens, GA. We report the near-complete genome sequence of C. paradoxum strain JW-YL-7 obtained by using PacBio DNA sequencing and Pilon for sequence assembly refinement with Illumina data.

8.
Appl Environ Microbiol ; 82(1): 51-61, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26452555

RESUMO

Enzymes of the denitrification pathway play an important role in the global nitrogen cycle, including release of nitrous oxide, an ozone-depleting greenhouse gas. In addition, nitric oxide reductase, maturation factors, and proteins associated with nitric oxide detoxification are used by pathogens to combat nitric oxide release by host immune systems. While the core reductases that catalyze the conversion of nitrate to dinitrogen are well understood at a mechanistic level, there are many peripheral proteins required for denitrification whose basic function is unclear. A bar-coded transposon DNA library from Pseudomonas stutzeri strain RCH2 was grown under denitrifying conditions, using nitrate or nitrite as an electron acceptor, and also under molybdenum limitation conditions, with nitrate as the electron acceptor. Analysis of sequencing results from these growths yielded gene fitness data for 3,307 of the 4,265 protein-encoding genes present in strain RCH2. The insights presented here contribute to our understanding of how peripheral proteins contribute to a fully functioning denitrification pathway. We propose a new low-affinity molybdate transporter, OatABC, and show that differential regulation is observed for two MoaA homologs involved in molybdenum cofactor biosynthesis. We also propose that NnrS may function as a membrane-bound NO sensor. The dominant HemN paralog involved in heme biosynthesis is identified, and a CheR homolog is proposed to function in nitrate chemotaxis. In addition, new insights are provided into nitrite reductase redundancy, nitric oxide reductase maturation, nitrous oxide reductase maturation, and regulation.


Assuntos
Proteínas de Bactérias/genética , Pseudomonas stutzeri/genética , Proteínas de Bactérias/metabolismo , Desnitrificação , Mutação , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Pseudomonas stutzeri/enzimologia , Pseudomonas stutzeri/metabolismo
9.
Appl Environ Microbiol ; 81(20): 7339-47, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26276113

RESUMO

Caldicellulosiruptor bescii grows optimally at 78°C and is able to decompose high concentrations of lignocellulosic plant biomass without the need for thermochemical pretreatment. C. bescii ferments both C5 and C6 sugars primarily to hydrogen gas, lactate, acetate, and CO2 and is of particular interest for metabolic engineering applications given the recent availability of a genetic system. Developing optimal strains for technological use requires a detailed understanding of primary metabolism, particularly when the goal is to divert all available reductant (electrons) toward highly reduced products such as biofuels. During an analysis of the C. bescii genome sequence for oxidoreductase-type enzymes, evidence was uncovered to suggest that the primary redox metabolism of C. bescii has a completely uncharacterized aspect involving tungsten, a rarely used element in biology. An active tungsten utilization pathway in C. bescii was demonstrated by the heterologous production of a tungsten-requiring, aldehyde-oxidizing enzyme (AOR) from the hyperthermophilic archaeon Pyrococcus furiosus. Furthermore, C. bescii also contains a tungsten-based AOR-type enzyme, here termed XOR, which is phylogenetically unique, representing a completely new member of the AOR tungstoenzyme family. Moreover, in C. bescii, XOR represents ca. 2% of the cytoplasmic protein. XOR is proposed to play a key, but as yet undetermined, role in the primary redox metabolism of this cellulolytic microorganism.


Assuntos
Proteínas de Bactérias/metabolismo , Bactérias Gram-Positivas/enzimologia , Bactérias Gram-Positivas/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Tungstênio/metabolismo , Aldeídos/metabolismo , Oxirredução , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/metabolismo
10.
Appl Environ Microbiol ; 81(15): 4976-83, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979890

RESUMO

The concentrations of molybdenum (Mo) and 25 other metals were measured in groundwater samples from 80 wells on the Oak Ridge Reservation (ORR) (Oak Ridge, TN), many of which are contaminated with nitrate, as well as uranium and various other metals. The concentrations of nitrate and uranium were in the ranges of 0.1 µM to 230 mM and <0.2 nM to 580 µM, respectively. Almost all metals examined had significantly greater median concentrations in a subset of wells that were highly contaminated with uranium (≥126 nM). They included cadmium, manganese, and cobalt, which were 1,300- to 2,700-fold higher. A notable exception, however, was Mo, which had a lower median concentration in the uranium-contaminated wells. This is significant, because Mo is essential in the dissimilatory nitrate reduction branch of the global nitrogen cycle. It is required at the catalytic site of nitrate reductase, the enzyme that reduces nitrate to nitrite. Moreover, more than 85% of the groundwater samples contained less than 10 nM Mo, whereas concentrations of 10 to 100 nM Mo were required for efficient growth by nitrate reduction for two Pseudomonas strains isolated from ORR wells and by a model denitrifier, Pseudomonas stutzeri RCH2. Higher concentrations of Mo tended to inhibit the growth of these strains due to the accumulation of toxic concentrations of nitrite, and this effect was exacerbated at high nitrate concentrations. The relevance of these results to a Mo-based nitrate removal strategy and the potential community-driving role that Mo plays in contaminated environments are discussed.


Assuntos
Desnitrificação , Água Subterrânea/química , Água Subterrânea/microbiologia , Molibdênio/metabolismo , Nitratos/metabolismo , Pseudomonas stutzeri/metabolismo , Coenzimas/metabolismo , Nitrato Redutase/metabolismo , Pseudomonas stutzeri/crescimento & desenvolvimento , Tennessee
11.
Protein Eng Des Sel ; 28(1): 1-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25476267

RESUMO

The archaeon Pyrococcus furiosus grows optimally at 100°C by converting carbohydrates to acetate, carbon dioxide and hydrogen gas (H2), obtaining energy from a respiratory membrane-bound hydrogenase (MBH). This conserves energy by coupling H2 production to oxidation of reduced ferredoxin with generation of a sodium ion gradient. MBH is classified as a Group 4 hydrogenase and is encoded by a 14-gene operon that contains hydrogenase and Na(+)/H(+) antiporter modules. Herein a His-tagged 4-subunit cytoplasmic subcomplex of MBH (C-MBH) was engineered and expressed in P. furiosus by differential transcription of the MBH operon. It was purified under anaerobic conditions by affinity chromatography without detergent. Purified C-MBH had a Fe : Ni ratio of 14 : 1, similar to the predicted value of 13 : 1. The O2 sensitivities of C-MBH and the 14-subunit membrane-bound version were similar (half-lives of ∼15 h in air), but C-MBH was more thermolabile (half-lives at 90°C of 8 and 25 h, respectively). C-MBH evolved H2 with the physiological electron donor, reduced ferredoxin, optimally at 60°C. This is the first report of the engineering and characterization of a soluble catalytically active subcomplex of a membrane-bound respiratory hydrogenase.


Assuntos
Proteínas Arqueais/metabolismo , Hidrogenase/metabolismo , Proteínas de Membrana/metabolismo , Engenharia de Proteínas/métodos , Subunidades Proteicas/metabolismo , Pyrococcus furiosus/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/genética , Hidrogenase/química , Hidrogenase/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Pyrococcus furiosus/genética
12.
Proc Natl Acad Sci U S A ; 111(43): E4568-76, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25316790

RESUMO

Protein framework alterations in heritable Cu, Zn superoxide dismutase (SOD) mutants cause misassembly and aggregation in cells affected by the motor neuron disease ALS. However, the mechanistic relationship between superoxide dismutase 1 (SOD1) mutations and human disease is controversial, with many hypotheses postulated for the propensity of specific SOD mutants to cause ALS. Here, we experimentally identify distinguishing attributes of ALS mutant SOD proteins that correlate with clinical severity by applying solution biophysical techniques to six ALS mutants at human SOD hotspot glycine 93. A small-angle X-ray scattering (SAXS) assay and other structural methods assessed aggregation propensity by defining the size and shape of fibrillar SOD aggregates after mild biochemical perturbations. Inductively coupled plasma MS quantified metal ion binding stoichiometry, and pulsed dipolar ESR spectroscopy evaluated the Cu(2+) binding site and defined cross-dimer copper-copper distance distributions. Importantly, we find that copper deficiency in these mutants promotes aggregation in a manner strikingly consistent with their clinical severities. G93 mutants seem to properly incorporate metal ions under physiological conditions when assisted by the copper chaperone but release copper under destabilizing conditions more readily than the WT enzyme. Altered intradimer flexibility in ALS mutants may cause differential metal retention and promote distinct aggregation trends observed for mutant proteins in vitro and in ALS patients. Combined biophysical and structural results test and link copper retention to the framework destabilization hypothesis as a unifying general mechanism for both SOD aggregation and ALS disease progression, with implications for disease severity and therapeutic intervention strategies.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/patologia , Mutação/genética , Agregação Patológica de Proteínas/enzimologia , Agregação Patológica de Proteínas/genética , Superóxido Dismutase/genética , Ácidos/metabolismo , Esclerose Lateral Amiotrófica/genética , Cobre/farmacologia , Cristalografia por Raios X , Ácido Edético/farmacologia , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Fenótipo , Substâncias Protetoras/farmacologia , Espalhamento a Baixo Ângulo , Soluções , Superóxido Dismutase/química , Superóxido Dismutase-1
13.
Genome Announc ; 2(5)2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25189589

RESUMO

Pelosinus species can reduce metals such as Fe(III), U(VI), and Cr(VI) and have been isolated from diverse geographical regions. Five draft genome sequences have been published. We report the complete genome sequence for Pelosinus sp. strain UFO1 using only PacBio DNA sequence data and without manual finishing.

14.
J Biol Chem ; 289(28): 19364-72, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24860091

RESUMO

The archaeon Pyrococcus furiosus grows optimally at 100 °C by converting carbohydrates to acetate, CO2, and H2, obtaining energy from a respiratory membrane-bound hydrogenase (MBH). This conserves energy by coupling H2 production to oxidation of reduced ferredoxin with generation of a sodium ion gradient. MBH is encoded by a 14-gene operon with both hydrogenase and Na(+)/H(+) antiporter modules. Herein a His-tagged MBH was expressed in P. furiosus and the detergent-solubilized complex purified under anaerobic conditions by affinity chromatography. Purified MBH contains all 14 subunits by electrophoretic analysis (13 subunits were also identified by mass spectrometry) and had a measured iron:nickel ratio of 15:1, resembling the predicted value of 13:1. The as-purified enzyme exhibited a rhombic EPR signal characteristic of the ready nickel-boron state. The purified and membrane-bound forms of MBH both preferentially evolved H2 with the physiological donor (reduced ferredoxin) as well as with standard dyes. The O2 sensitivities of the two forms were similar (half-lives of ∼ 15 h in air), but the purified enzyme was more thermolabile (half-lives at 90 °C of 1 and 25 h, respectively). Structural analysis of purified MBH by small angle x-ray scattering indicated a Z-shaped structure with a mass of 310 kDa, resembling the predicted value (298 kDa). The angle x-ray scattering analyses reinforce and extend the conserved sequence relationships of group 4 enzymes and complex I (NADH quinone oxidoreductase). This is the first report on the properties of a solubilized form of an intact respiratory MBH complex that is proposed to evolve H2 and pump Na(+) ions.


Assuntos
Proteínas Arqueais/química , Membrana Celular/enzimologia , Hidrogenase/química , Pyrococcus furiosus/enzimologia , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Membrana Celular/genética , Cristalografia por Raios X , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Estrutura Quaternária de Proteína , Pyrococcus furiosus/genética
15.
Metallomics ; 6(5): 1004-13, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24706256

RESUMO

Although as many as half of all proteins are thought to require a metal cofactor, the metalloproteomes of microorganisms remain relatively unexplored. Microorganisms from different environments are likely to vary greatly in the metals that they assimilate, not just among the metals with well-characterized roles but also those lacking any known function. Herein we investigated the metal utilization of two microorganisms that were isolated from very similar environments and are of interest because of potential roles in the immobilization of heavy metals, such as uranium and chromium. The metals assimilated and their concentrations in the cytoplasm of Desulfovibrio vulgaris strain Hildenborough (DvH) and Enterobacter cloacae strain Hanford (EcH) varied dramatically, with a larger number of metals present in Enterobacter. For example, a total of 9 and 19 metals were assimilated into their cytoplasmic fractions, respectively, and DvH did not assimilate significant amounts of zinc or copper whereas EcH assimilated both. However, bioinformatic analysis of their genome sequences revealed a comparable number of predicted metalloproteins, 813 in DvH and 953 in EcH. These allowed some rationalization of the types of metal assimilated in some cases (Fe, Cu, Mo, W, V) but not in others (Zn, Nd, Ce, Pr, Dy, Hf and Th). It was also shown that U binds an unknown soluble protein in EcH but this incorporation was the result of extracellular U binding to cytoplasmic components after cell lysis.


Assuntos
Biodegradação Ambiental , Desulfovibrio vulgaris/metabolismo , Enterobacter cloacae/metabolismo , Metais Pesados/metabolismo , Cromatografia Líquida de Alta Pressão , Desulfovibrio vulgaris/genética , Enterobacter cloacae/genética , Genoma Bacteriano , Espectrometria de Massas
16.
J Bacteriol ; 194(15): 4097-106, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22636780

RESUMO

The model archaeon Pyrococcus furiosus grows optimally near 100°C on carbohydrates and peptides. Its genome sequence (NCBI) was determined 12 years ago. A genetically tractable strain, COM1, was very recently reported, and here we describe its genome sequence. Of 1,909,827 bp in size, it is 1,571 bp longer (0.1%) than the reference NCBI sequence. The COM1 genome contains numerous chromosomal rearrangements, deletions, and single base changes. COM1 also has 45 full or partial insertion sequences (ISs) compared to 35 in the reference NCBI strain, and these have resulted in the direct deletion or insertional inactivation of 13 genes. Another seven genes were affected by chromosomal deletions and are predicted to be nonfunctional. In addition, the amino acid sequences of another 102 of the 2,134 predicted gene products are different in COM1. These changes potentially impact various cellular functions, including carbohydrate, peptide, and nucleotide metabolism; DNA repair; CRISPR-associated defense; transcriptional regulation; membrane transport; and growth at 72°C. For example, the IS-mediated inactivation of riboflavin synthase in COM1 resulted in a riboflavin requirement for growth. Nevertheless, COM1 grew on cellobiose, malto-oligosaccharides, and peptides in complex and minimal media at 98 and 72°C to the same extent as did both its parent strain and a new culture collection strain (DSMZ 3638). This was in spite of COM1 lacking several metabolic enzymes, including nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase and beta-glucosidase. The P. furiosus genome is therefore of high plasticity, and the availability of the COM1 sequence will be critical for the future studies of this model hyperthermophile.


Assuntos
DNA Arqueal/química , DNA Arqueal/genética , Genoma Arqueal , Pyrococcus furiosus/genética , Cromossomos de Archaea , Rearranjo Gênico , Dados de Sequência Molecular , Mutação Puntual , Análise de Sequência de DNA , Deleção de Sequência
17.
BMC Bioinformatics ; 12: 64, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21356119

RESUMO

BACKGROUND: Metal-containing proteins comprise a diverse and sizable category within the proteomes of organisms, ranging from proteins that use metals to catalyze reactions to proteins in which metals play key structural roles. Unfortunately, reliably predicting that a protein will contain a specific metal from its amino acid sequence is not currently possible. We recently developed a generally-applicable experimental technique for finding metalloproteins on a genome-wide scale. Applying this metal-directed protein purification approach (ICP-MS and MS/MS based) to the prototypical microbe Pyrococcus furiosus conclusively demonstrated the extent and diversity of the uncharacterized portion of microbial metalloproteomes since a majority of the observed metal peaks could not be assigned to known or predicted metalloproteins. However, even using this technique, it is not technically feasible to purify to homogeneity all metalloproteins in an organism. In order to address these limitations and complement the metal-directed protein purification, we developed a computational infrastructure and statistical methodology to aid in the pursuit and identification of novel metalloproteins. RESULTS: We demonstrate that our methodology enables predictions of metal-protein interactions using an experimental data set derived from a chromatography fractionation experiment in which 870 proteins and 10 metals were measured over 2,589 fractions. For each of the 10 metals, cobalt, iron, manganese, molybdenum, nickel, lead, tungsten, uranium, vanadium, and zinc, clusters of proteins frequently occurring in metal peaks (of a specific metal) within the fractionation space were defined. This resulted in predictions that there are from 5 undiscovered vanadium- to 13 undiscovered cobalt-containing proteins in Pyrococcus furiosus. Molybdenum and nickel were chosen for additional assessment producing lists of genes predicted to encode metalloproteins or metalloprotein subunits, 22 for nickel including seven from known nickel-proteins, and 20 for molybdenum including two from known molybdo-proteins. The uncharacterized proteins are prime candidates for metal-based purification or recombinant approaches to validate these predictions. CONCLUSIONS: We conclude that the largely uncharacterized extent of native metalloproteomes can be revealed through analysis of the co-occurrence of metals and proteins across a fractionation space. This can significantly impact our understanding of metallobiochemistry, disease mechanisms, and metal toxicity, with implications for bioremediation, medicine and other fields.


Assuntos
Biologia Computacional/métodos , Metaloproteínas/análise , Proteoma/análise , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Bases de Dados de Proteínas , Processamento Eletrônico de Dados/métodos , Metaloproteínas/química , Metaloproteínas/isolamento & purificação , Metais/análise , Metais/química , Metais/metabolismo , Molibdênio/química , Níquel/química , Domínios e Motivos de Interação entre Proteínas , Pyrococcus furiosus/metabolismo
18.
Nature ; 466(7307): 779-82, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20639861

RESUMO

Metal ion cofactors afford proteins virtually unlimited catalytic potential, enable electron transfer reactions and have a great impact on protein stability. Consequently, metalloproteins have key roles in most biological processes, including respiration (iron and copper), photosynthesis (manganese) and drug metabolism (iron). Yet, predicting from genome sequence the numbers and types of metal an organism assimilates from its environment or uses in its metalloproteome is currently impossible because metal coordination sites are diverse and poorly recognized. We present here a robust, metal-based approach to determine all metals an organism assimilates and identify its metalloproteins on a genome-wide scale. This shifts the focus from classical protein-based purification to metal-based identification and purification by liquid chromatography, high-throughput tandem mass spectrometry (HT-MS/MS) and inductively coupled plasma mass spectrometry (ICP-MS) to characterize cytoplasmic metalloproteins from an exemplary microorganism (Pyrococcus furiosus). Of 343 metal peaks in chromatography fractions, 158 did not match any predicted metalloprotein. Unassigned peaks included metals known to be used (cobalt, iron, nickel, tungsten and zinc; 83 peaks) plus metals the organism was not thought to assimilate (lead, manganese, molybdenum, uranium and vanadium; 75 peaks). Purification of eight of 158 unexpected metal peaks yielded four novel nickel- and molybdenum-containing proteins, whereas four purified proteins contained sub-stoichiometric amounts of misincorporated lead and uranium. Analyses of two additional microorganisms (Escherichia coli and Sulfolobus solfataricus) revealed species-specific assimilation of yet more unexpected metals. Metalloproteomes are therefore much more extensive and diverse than previously recognized, and promise to provide key insights for cell biology, microbial growth and toxicity mechanisms.


Assuntos
Proteínas de Bactérias/análise , Metaloproteínas/análise , Metaloproteínas/química , Metais/análise , Proteoma/análise , Pyrococcus furiosus/química , Proteínas de Bactérias/química , Cromatografia Líquida , Escherichia coli/química , Metais/química , Metais/metabolismo , Proteoma/química , Proteômica , Pyrococcus furiosus/metabolismo , Sulfolobus solfataricus/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...