Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
Cell Rep ; 43(7): 114486, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38990718

RESUMO

Skin/soft tissue infections (SSTIs) caused by methicillin-resistant Staphylococcus aureus (MRSA) pose a major healthcare burden. Distinct inflammatory and resolution phases comprise the host immune response to SSTIs. Resolution is a myeloid PPARγ-dependent anti-inflammatory phase that is essential for the clearance of MRSA. However, the signals activating PPARγ to induce resolution remain unknown. Here, we demonstrate that myeloid glucose transporter 1 (GLUT-1) is essential for the onset of resolution. MRSA-challenged macrophages are unsuccessful in generating an oxidative burst or immune radicals in the absence of GLUT-1 due to a reduction in the cellular NADPH pool. This translates in vivo as a significant reduction in lipid peroxidation products required for the activation of PPARγ in MRSA-infected mice lacking myeloid GLUT-1. Chemical induction of PPARγ during infection circumvents this GLUT-1 requirement and improves resolution. Thus, GLUT-1-dependent oxidative burst is essential for the activation of PPARγ and subsequent resolution of SSTIs.

2.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826453

RESUMO

C. elegans are exposed to a variety of pathogenic and non-pathogenic bacteria species in their natural environment. Correspondingly, C. elegans has evolved an ability to discern between nutritive and infectious bacterial food sources. Here we show that C. elegans can learn to avoid the pathogenic bacteria Pseudomonas fluorescens 15 (PF15), and that this learned avoidance behavior is passed on to progeny for four generations, as we previously demonstrated for Pseudomonas aeruginosa (PA14) and Pseudomonas vranovensis, using similar mechanisms, including the involvement of both the TGF-ß ligand DAF-7 and Cer1 retrotransposon-encoded virus-like particles. PF15 small RNAs are both necessary and sufficient to induce this transgenerational avoidance behavior. Unlike PA14 or P. vranovensis, PF15 does not use P11, Pv1, or a small RNA with maco-1 homology for this avoidance; instead, an unrelated PF15 small RNA, Pfs1, that targets the C. elegans vab-1 Ephrin receptor gene is necessary and sufficient for learned avoidance, suggesting the evolution of yet another bacterial sRNA/C. elegans gene target pair involved in transgenerational inheritance of pathogen avoidance. As VAB-2 Ephrin receptor ligand and MACO-1 knockdown also induce PF15 avoidance, we have begun to understand the genetic pathway involved in small RNA targeted pathogenic avoidance. Moreover, these data show that axon guidance pathway genes (VAB-1 and VAB-2) have previously unknown adult roles in regulating neuronal function. C. elegans may have evolved multiple bacterial specificity-encoded small RNA-dependent mechanisms to avoid different pathogenic bacteria species, thereby providing progeny with a survival advantage in a dynamic environment.

3.
mBio ; 15(6): e0086224, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38767353

RESUMO

Mammalian target of rapamycin (mTOR) is a key regulator of metabolism in the mammalian cell. Here, we show the essential role for mTOR signaling in the immune response to bacterial infection. Inhibition of mTOR during infection with Staphylococcus aureus revealed that mTOR signaling is required for bactericidal free radical production by phagocytes. Mechanistically, mTOR supported glucose transporter GLUT1 expression, potentially through hypoxia-inducible factor 1α, upon phagocyte activation. Cytokine and chemokine signaling, inducible nitric oxide synthase, and p65 nuclear translocation were present at similar levels during mTOR suppression, suggesting an NF-κB-independent role for mTOR signaling in the immune response during bacterial infection. We propose that mTOR signaling primarily mediates the metabolic requirements necessary for phagocyte bactericidal free radical production. This study has important implications for the metabolic requirements of innate immune cells during bacterial infection as well as the clinical use of mTOR inhibitors.IMPORTANCESirolimus, everolimus, temsirolimus, and similar are a class of pharmaceutics commonly used in the clinical treatment of cancer and the anti-rejection of transplanted organs. Each of these agents suppresses the activity of the mammalian target of rapamycin (mTOR), a master regulator of metabolism in human cells. Activation of mTOR is also involved in the immune response to bacterial infection, and treatments that inhibit mTOR are associated with increased susceptibility to bacterial infections in the skin and soft tissue. Infections caused by Staphylococcus aureus are among the most common and severe. Our study shows that this susceptibility to S. aureus infection during mTOR suppression is due to an impaired function of phagocytic immune cells responsible for controlling bacterial infections. Specifically, we observed that mTOR activity is required for phagocytes to produce antimicrobial free radicals. These results have important implications for immune responses during clinical treatments and in disease states where mTOR is suppressed.


Assuntos
Transportador de Glucose Tipo 1 , Fagócitos , Transdução de Sinais , Infecções Estafilocócicas , Staphylococcus aureus , Serina-Treonina Quinases TOR , Staphylococcus aureus/imunologia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Fagócitos/imunologia , Fagócitos/metabolismo , Fagócitos/microbiologia , Humanos , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Animais , Radicais Livres/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
4.
Nature ; 628(8008): 639-647, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570691

RESUMO

Prime editing enables the precise modification of genomes through reverse transcription of template sequences appended to the 3' ends of CRISPR-Cas guide RNAs1. To identify cellular determinants of prime editing, we developed scalable prime editing reporters and performed genome-scale CRISPR-interference screens. From these screens, a single factor emerged as the strongest mediator of prime editing: the small RNA-binding exonuclease protection factor La. Further investigation revealed that La promotes prime editing across approaches (PE2, PE3, PE4 and PE5), edit types (substitutions, insertions and deletions), endogenous loci and cell types but has no consistent effect on genome-editing approaches that rely on standard, unextended guide RNAs. Previous work has shown that La binds polyuridine tracts at the 3' ends of RNA polymerase III transcripts2. We found that La functionally interacts with the 3' ends of polyuridylated prime editing guide RNAs (pegRNAs). Guided by these results, we developed a prime editor protein (PE7) fused to the RNA-binding, N-terminal domain of La. This editor improved prime editing with expressed pegRNAs and engineered pegRNAs (epegRNAs), as well as with synthetic pegRNAs optimized for La binding. Together, our results provide key insights into how prime editing components interact with the cellular environment and suggest general strategies for stabilizing exogenous small RNAs therein.


Assuntos
Edição de Genes , Proteínas de Ligação a RNA , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Células K562 , Poli U/genética , Poli U/metabolismo , RNA Polimerase III/metabolismo , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Proteínas de Ligação a RNA/metabolismo
5.
Infect Immun ; : e0050923, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526063

RESUMO

Diabetes mellitus, characterized by impaired insulin signaling, is associated with increased incidence and severity of infections. Various diabetes-related complications contribute to exacerbated bacterial infections, including hyperglycemia, innate immune cell dysfunction, and infection with antibiotic-resistant bacterial strains. One defining symptom of diabetes is hyperglycemia, resulting in elevated blood and tissue glucose concentrations. Glucose is the preferred carbon source of several bacterial pathogens, and hyperglycemia escalates bacterial growth and virulence. Hyperglycemia promotes specific mechanisms of bacterial virulence known to contribute to infection chronicity, including tissue adherence and biofilm formation. Foot infections are a significant source of morbidity in individuals with diabetes and consist of biofilm-associated polymicrobial communities. Bacteria perform complex interspecies behaviors conducive to their growth and virulence within biofilms, including metabolic cross-feeding and altered phenotypes more tolerant to antibiotic therapeutics. Moreover, the metabolic dysfunction caused by diabetes compromises immune cell function, resulting in immune suppression. Impaired insulin signaling induces aberrations in phagocytic cells, which are crucial mediators for controlling and resolving bacterial infections. These aberrancies encompass altered cytokine profiles, the migratory and chemotactic mechanisms of neutrophils, and the metabolic reprogramming required for the oxidative burst and subsequent generation of bactericidal free radicals. Furthermore, the immune suppression caused by diabetes and the polymicrobial nature of the diabetic infection microenvironment may promote the emergence of novel strains of multidrug-resistant bacterial pathogens. This review focuses on the "triple threat" linked to worsened bacterial infections in individuals with diabetes: (i) altered nutritional availability in diabetic tissues, (ii) diabetes-associated immune suppression, and (iii) antibiotic treatment failure.

6.
Front Mol Neurosci ; 17: 1355281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481473

RESUMO

The individual and global burden of migraine is of such significance that there are accelerated efforts to develop new therapies. New migraine therapeutics are needed to address the current deficiencies that exist in the efficacy and adherence rate of approved anti-migraine medications. The recent discovery of the calcitonin gene related peptide as an add-on to the role of serotonin has markedly increased the range of new treatment options for acute and chronic migraine. Despite this, tackling the complexity of migraine disorders requires a complete understanding of its pathophysiology. Preclinical animal models can shed light on disease-related pathophysiology, including migraine. Indeed, the use of animal models has been instrumental in developing many therapeutics. However, an animal model is limited by the predictive and face validity of that model, and this extends to preclinical migraine models. In this review, a summary of the current understanding of the pathophysiology of migraine is given from both a preclinical and clinical perspective, and an emphasis is placed on the animal models of migraine. We will discuss the strengths and pitfalls of common preclinical migraine models as well as experimental research areas to explore further.

7.
ACS Pharmacol Transl Sci ; 7(3): 654-666, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38481688

RESUMO

Opioids represent the most extensive category of abused substances in the United States, and the number of fatalities caused by these drugs exceeds those associated with all other drug overdoses combined. The administration of naltrexone, a potent pan-opioid receptor antagonist, to an individual dependent on opioids can trigger opioid withdrawal and induce severe side effects. There is a pressing demand for opioid antagonists free of opioid withdrawal effects. In our laboratory, we have identified a compound with affinity to mu, delta, and kappa opioid receptors in the range of 150-250 nM. This blood-brain barrier (BBB)-permeant compound was metabolically stable in vitro and in vivo. Our in vivo work demonstrated that 1-10 mg/kg intraperitoneal administration of our compound produces moderate efficacy in antagonizing morphine-induced antiallodynia effects in the chemotherapy-induced peripheral neuropathy (CIPN) model. The treatment was well-tolerated and did not cause behavioral changes. We have observed a fast elimination rate of this metabolically stable molecule. Furthermore, no organ toxicity was observed during the chronic administration of the compound over a 14-day period. Overall, we report a novel functional opioid antagonist holds promise for developing an opioid withdrawal therapeutic.

8.
Proc Natl Acad Sci U S A ; 121(6): e2300644120, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306481

RESUMO

It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidin's role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Células Endoteliais , Proteoma , Peptídeos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38414295

RESUMO

This article describes the development of an institutional quality improvement review board (QIRB) as an effective and efficient method for reviewing and overseeing institutional quality improvement (QI) initiatives. QI projects involve the systematic collection and analysis of data and the implementation of interventions designed to improve the quality of clinical care and/or educational programs for a distinct population in a specific setting. QI projects are fundamentally distinct from human subjects research (HuSR); however, the differences between them are subtle and highly nuanced. Determining whether a project meets the definition of QI or qualifies as HuSR, thus requiring institutional review board (IRB) review, can be confusing and frustrating. Nevertheless, this distinction is highly consequential due to the heavy regulatory requirements involved in HuSR and IRB oversight. Making the correct determination of a project's regulatory status is essential before the project begins. Project leaders may not realize that their work meets the definition of HuSR and, therefore, might conduct the project without appropriate IRB review. Therefore, best practices dictate that project leaders should not decide which type of institutional review is appropriate for their projects. In addition, when QI project teams attempt to disseminate the results of their work, documentation of formal review and approval is generally required by peer-reviewed journals and professional organizations. However, institutional review mechanisms are rarely available. Projects that do not meet the definition of HuSR fall outside the purview of IRBs and most institutions do not have an alternative review body. This creates frustration for both project leaders and IRB administrators. Apart from IRB review, a separate process for reviewing QI projects offers several benefits. These include (1) relieving the burden on busy IRB staff; (2) promoting scholarly activity; (3) protecting the institution, project leaders, and participants from HuSR conducted outside of appropriate IRB review; and (4) promoting rigorous QI methods.

10.
Microbiol Spectr ; 11(6): e0229923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37933971

RESUMO

IMPORTANCE: Individuals with diabetes are prone to more frequent and severe infections, with many of these infections being polymicrobial. Polymicrobial infections are frequently observed in skin infections and in individuals with cystic fibrosis, as well as in indwelling device infections. Two bacteria frequently co-isolated from infections are Staphylococcus aureus and Pseudomonas aeruginosa. Several studies have examined the interactions between these microorganisms. The majority of these studies use in vitro model systems that cannot accurately replicate the microenvironment of diabetic infections. We employed a novel murine indwelling device model to examine interactions between S. aureus and P. aeruginosa. Our data show that competition between these bacteria results in reduced growth in a normal infection. In a diabetic infection, we observe increased growth of both microbes and more severe infection as both bacteria invade surrounding tissues. Our results demonstrate that diabetes changes the interaction between bacteria resulting in poor infection outcomes.


Assuntos
Diabetes Mellitus , Hiperglicemia , Infecções por Pseudomonas , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Staphylococcus aureus , Pseudomonas aeruginosa , Virulência , Infecções Estafilocócicas/microbiologia , Infecções por Pseudomonas/microbiologia , Biofilmes
11.
Front Fungal Biol ; 4: 1064939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746129

RESUMO

The pathogen Ophidiomyces ophidiicola, widely known as the primary cause of snake fungal disease (SFD) has been detected in Texas's naïve snakes. Our team set out to characterize O. ophidiicola's spread in eastern Texas. From December 2018 until November 2021, we sampled and screened with ultraviolet (UV) light, 176 snakes across eastern Texas and detected 27. O. ophidiicola's positive snakes using qPCR and one snake in which SFD was confirmed via additional histological examination. Upon finding the ribbon snake with clear clinical display, we isolated and cultured what we believe to be the first culture from Texas. This cultured O. ophidiicola TX displays a ring halo formation when grown on a solid medium as well as cellular autofluorescence as expected. Imaging reveals individual cells within the septated hyphae branches contain a distinct nucleus separation from neighboring cells. Overall, we have found over 1/10 snakes that may be infected in East Texas, gives credence to the onset of SFD in Texas. These results add to the progress of the disease across the continental United States.

13.
J Environ Health ; 85(7): 8-15, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37448651

RESUMO

After a chemical fire, an investigation assessed health effects by using syndromic surveillance to monitor emergency department (ED) visits, a general health survey to assess the general public, and a first responders health survey to assess first responders. A total of four separate multivariable logistic regression models were developed to examine associations between reported exposure to smoke, dust, debris, or odor with any reported symptom in the general public. Syndromic surveillance identified areas with increased ED visits. Among general health survey respondents, 45.1% (911 out of 2,020) reported at least one symptom. Respondents reporting exposure to smoke, dust, debris, or odor had 4.5 (95% confidence interval (CI) [3.7, 5.5]), 4.6 (95% CI [3.6, 5.8]), 2.0 (95% CI [1.7, 2.5]), or 5.8 (95% CI [4.7, 7.3]) times the odds of reporting any symptom compared with respondents not reporting exposure to smoke, dust, debris, or odor, respectively. First responders commonly reported contact with material and being within 1 mi of the fire ≥5 hr; 10 out of 31 of first responders reported at least one symptom. There was high symptom burden reported after the fire. Results from our investigation might assist the directing of public health resources to effectively address immediate community needs and prepare for future incidents.

14.
Protein Sci ; 32(8): e4707, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37334491

RESUMO

Staphylococcus epidermidis and Staphylococcus aureus are highly problematic bacteria in hospital settings. A major challenge is their ability to form biofilms on abiotic or biotic surfaces. Biofilms are well-organized, multicellular bacterial aggregates that resist antibiotic treatment and often lead to recurrent infections. Bacterial cell wall-anchored (CWA) proteins are important players in biofilm formation and infection. Many have putative stalk-like regions or regions of low complexity near the cell wall-anchoring motif. Recent work demonstrated the strong propensity of the stalk region of S. epidermidis accumulation-associated protein (Aap) to remain highly extended under solution conditions that typically induce compaction. This behavior is consistent with the expected function of a stalk-like region that is covalently attached to the cell wall peptidoglycan and projects the adhesive domains of Aap away from the cell surface. In this study, we evaluate whether the ability to resist compaction is a common theme among stalk regions from various staphylococcal CWA proteins. Circular dichroism spectroscopy was used to examine secondary structure changes as a function of temperature and cosolvents along with sedimentation velocity analytical ultracentrifugation, size-exclusion chromatography, and SAXS to characterize structural characteristics in solution. All stalk regions tested are intrinsically disordered, lacking secondary structure beyond random coil and polyproline type II helix, and they all sample highly extended conformations. Remarkably, the Ser-Asp dipeptide repeat region of SdrC exhibited nearly identical behavior in solution when compared to the Aap Pro/Gly-rich region, despite highly divergent sequence patterns, indicating conservation of function by various distinct staphylococcal CWA protein stalk regions.


Assuntos
Proteínas de Membrana , Infecções Estafilocócicas , Humanos , Proteínas de Membrana/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Biofilmes , Proteínas de Bactérias/química , Staphylococcus epidermidis/química , Staphylococcus epidermidis/metabolismo , Infecções Estafilocócicas/microbiologia
15.
Eur J Drug Metab Pharmacokinet ; 48(4): 427-435, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37337087

RESUMO

BACKGROUND AND OBJECTIVES: A wide variety of products containing cannabidiol (CBD) are available on the commercial market. One of the most common products, CBD oil, is administered to self-treat a variety of conditions. These oils are available as CBD isolate, broad-spectrum [all terpenes and minor cannabinoids except Δ-9-tetrahydrocannabinol (THC)], or full-spectrum (all terpenes and minor cannabinoids with THC < 0.3% dried weight) products. A systematic pharmacokinetic study was performed to determine whether there are differences in the pharmacokinetic parameters and systemic exposure of CBD after oral dosing as an isolate, broad-spectrum, or full-spectrum product. METHODS: Male and female Sprague Dawley rats were treated with a single, equivalent oral dose of CBD delivered as isolate, broad-spectrum, or full-spectrum product. An additional study using an in-house preparation of CBD isolate plus 0.2% THC was performed. A permeability assay was also conducted to investigate whether the presence of THC alters the intestinal permeability of CBD. RESULTS: There was an increase in the oral bioavailability of CBD (12% and 21% in male and female rats, respectively) when administered as a full-spectrum product compared with the isolate and broad-spectrum products. There was no difference in the bioavailability of CBD between the commercially available full-spectrum formulation (3.1% CBD; containing 0.2% THC plus terpenes and other minor cannabinoids) versus the in-house preparation of CBD full-spectrum (CBD isolate 3.2% plus 0.2% THC isolate). In vitro permeability assays demonstrated that the presence of THC increases permeability of CBD while also decreasing efflux through the gut wall. CONCLUSIONS: The presence of 0.2% THC increased the oral bioavailability of CBD in male and female rats, indicating that full-spectrum products may produce increased effectiveness of CBD due to a greater exposure available systemically.


Assuntos
Canabidiol , Canabinoides , Masculino , Feminino , Ratos , Animais , Dronabinol , Ratos Sprague-Dawley , Disponibilidade Biológica
16.
Pathogens ; 12(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375542

RESUMO

Host cell restriction factors are intracellular proteins that can inhibit virus replication. Characterisation of novel host cell restriction factors can provide potential targets for host-directed therapies. In this study, we aimed to assess a member of the Tripartite-motif family protein (TRIM) family, TRIM16, as a putative host cell restriction factor. To this end, we utilized constitutive or doxycycline-inducible systems to overexpress TRIM16 in HEK293T epithelial cells and then tested for its ability to inhibit growth by a range of RNA and DNA viruses. In HEK293T cells, overexpression of TRIM16 resulted in potent inhibition of multiple viruses, however, when TRIM16 was overexpressed in other epithelial cell lines (A549, Hela, or Hep2), virus inhibition was not observed. When investigating the antiviral activity of endogenous TRIM16, we report that siRNA-mediated knockdown of TRIM16 in A549 cells also modulated the mRNA expression of other TRIM proteins, complicating the interpretation of results using this method. Therefore, we used CRISPR/Cas9 editing to knockout TRIM16 in A549 cells and demonstrate that endogenous TRIM16 did not mediate antiviral activity against the viruses tested. Thus, while initial overexpression in HEK293T cells suggested that TRIM16 was a host cell restriction factor, alternative approaches did not validate these findings. These studies highlight the importance of multiple complementary experimental approaches, including overexpression analysis in multiple cell lines and investigation of the endogenous protein, when defining host cell restriction factors with novel antiviral activity.

17.
Pharmacol Rep ; 75(4): 937-950, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37243887

RESUMO

BACKGROUND: For many chemotherapy patients peripheral neuropathy is a debilitating side effect. Mitragyna speciosa (kratom) contains the alkaloid mitragynine (MG), which produces analgesia in multiple preclinical pain models. In humans, anecdotal reports suggest cannabidiol (CBD) may enhance kratom-related analgesia. We examined the interactive activity of MG and CBD in a mouse chemotherapy-induced peripheral neuropathy (CIPN) model. We also examined MG + CBD in acute antinociception and schedule-controlled responding assays, as well as examined underlying receptor mechanisms. METHODS: Male and female C57BL/6J mice received a cycle of intraperitoneal (ip) paclitaxel injections (cumulative dose 32 mg/kg). The von Frey assay was utilized to assess CIPN allodynia. In paclitaxel-naïve mice, schedule-controlled responding for food was conducted under a fixed ratio (FR)-10, and hot plate antinociception was examined. RESULTS: MG dose-relatedly attenuated CIPN allodynia (ED50 102.96 mg/kg, ip), reduced schedule-controlled responding (ED50 46.04 mg/kg, ip), and produced antinociception (ED50 68.83 mg/kg, ip). CBD attenuated allodynia (ED50 85.14 mg/kg, ip) but did not decrease schedule-controlled responding or produce antinociception. Isobolographic analysis revealed 1:1, 3:1 MG + CBD mixture ratios additively attenuated CIPN allodynia. All combinations decreased schedule-controlled responding and produced antinociception. WAY-100635 (serotonin 5-HT1A receptor antagonist) pretreatment (0.01 mg/kg, ip) antagonized CBD anti-allodynia. Naltrexone (pan opioid receptor antagonist) pretreatment (0.032 mg/kg, ip) antagonized MG anti-allodynia and acute antinociception but produced no change in MG-induced decreased schedule-controlled behavior. Yohimbine (α2 receptor antagonist) pretreatment (3.2 mg/kg, ip) antagonized MG anti-allodynia and produced no change in MG-induced acute antinociception or decreased schedule-controlled behavior. CONCLUSIONS: Although more optimization is needed, these data suggest CBD combined with MG may be useful as a novel CIPN therapeutic.


Assuntos
Canabidiol , Doenças do Sistema Nervoso Periférico , Camundongos , Humanos , Masculino , Feminino , Animais , Paclitaxel/toxicidade , Canabidiol/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Camundongos Endogâmicos C57BL , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Modelos Animais de Doenças , Dor/tratamento farmacológico
18.
J Pharmacol Exp Ther ; 385(3): 180-192, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37019472

RESUMO

Mitragynine, an opioidergic alkaloid present in Mitragyna speciosa (kratom), is metabolized by cytochrome P450 3A (CYP3A) to 7-hydroxymitragynine, a more potent opioid receptor agonist. The extent to which conversion to 7-hydroxymitragynine mediates the in vivo effects of mitragynine is unclear. The current study examined how CYP3A inhibition (ketoconazole) modifies the pharmacokinetics of mitragynine in rat liver microsomes in vitro. The study further examined how ketoconazole modifies the discriminative stimulus and antinociceptive effects of mitragynine in rats. Ketoconazole [30 mg/kg, oral gavage (o.g.)] increased systemic exposure to mitragynine (13.3 mg/kg, o.g.) by 120% and 7-hydroxymitragynine exposure by 130%. The unexpected increase in exposure to 7-hydroxymitragynine suggested that ketoconazole inhibits metabolism of both mitragynine and 7-hydroxymitragynine, a finding confirmed in rat liver microsomes. In rats discriminating 3.2 mg/kg morphine from vehicle under a fixed-ratio schedule of food delivery, ketoconazole pretreatment increased the potency of both mitragynine (4.7-fold) and 7-hydroxymitragynine (9.7-fold). Ketoconazole did not affect morphine's potency. Ketoconazole increased the antinociceptive potency of 7-hydroxymitragynine by 4.1-fold. Mitragynine (up to 56 mg/kg, i.p.) lacked antinociceptive effects both in the presence and absence of ketoconazole. These results suggest that both mitragynine and 7-hydroxymitragynine are cleared via CYP3A and that 7-hydroxymitragynine is formed as a metabolite of mitragynine by other routes. These results have implications for kratom use in combination with numerous medications and citrus juices that inhibit CYP3A. SIGNIFICANCE STATEMENT: Mitragynine is an abundant kratom alkaloid that exhibits low efficacy at the µ-opioid receptor (MOR). Its metabolite, 7-hydroxymitragynine, is also an MOR agonist but with higher affinity and efficacy than mitragynine. Our results in rats demonstrate that cytochrome P450 3A (CYP3A) inhibition can increase the systematic exposure of both mitragynine and 7-hydroxymitragynine and their potency to produce MOR-mediated behavioral effects. These data highlight potential interactions between kratom and CYP3A inhibitors, which include numerous medications and citrus juices.


Assuntos
Citocromo P-450 CYP3A , Alcaloides de Triptamina e Secologanina , Ratos , Animais , Cetoconazol/farmacologia , Alcaloides de Triptamina e Secologanina/metabolismo , Morfina/farmacologia , Analgésicos Opioides/farmacologia
19.
Nat Ecol Evol ; 7(4): 557-569, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36941345

RESUMO

Sweat bees have repeatedly gained and lost eusociality, a transition from individual to group reproduction. Here we generate chromosome-length genome assemblies for 17 species and identify genomic signatures of evolutionary trade-offs associated with transitions between social and solitary living. Both young genes and regulatory regions show enrichment for these molecular patterns. We also identify loci that show evidence of complementary signals of positive and relaxed selection linked specifically to the convergent gains and losses of eusociality in sweat bees. This includes two pleiotropic proteins that bind and transport juvenile hormone (JH)-a key regulator of insect development and reproduction. We find that one of these proteins is primarily expressed in subperineurial glial cells that form the insect blood-brain barrier and that brain levels of JH vary by sociality. Our findings are consistent with a role of JH in modulating social behaviour and suggest that eusocial evolution was facilitated by alteration of the proteins that bind and transport JH, revealing how an ancestral developmental hormone may have been co-opted during one of life's major transitions. More broadly, our results highlight how evolutionary trade-offs have structured the molecular basis of eusociality in these bees and demonstrate how both directional selection and release from constraint can shape trait evolution.


Assuntos
Comportamento Social , Suor , Abelhas , Animais , Reprodução , Fenótipo
20.
bioRxiv ; 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36711672

RESUMO

Staphylococcus epidermidis and S. aureus are highly problematic bacteria in hospital settings. This stems, at least in part, from strong abilities to form biofilms on abiotic or biotic surfaces. Biofilms are well-organized multicellular aggregates of bacteria, which, when formed on indwelling medical devices, lead to infections that are difficult to treat. Cell wall-anchored (CWA) proteins are known to be important players in biofilm formation and infection. Many of these proteins have putative stalk-like regions or regions of low complexity near the cell wall-anchoring motif. Recent work demonstrated the strong propensity of the stalk region of the S. epidermidis accumulation-associated protein (Aap) to remain highly extended under solution conditions that typically induce compaction or other significant conformational changes. This behavior is consistent with the expected function of a stalk-like region that is covalently attached to the cell wall peptidoglycan and projects the adhesive domains of Aap away from the cell surface. In this study, we evaluate whether the ability to resist compaction is a common theme among stalk regions from various staphylococcal CWA proteins. Circular dichroism spectroscopy was used to examine secondary structure changes as a function of temperature and cosolvents along with sedimentation velocity analytical ultracentrifugation and SAXS to characterize structural characteristics in solution. All stalk regions tested are intrinsically disordered, lacking secondary structure beyond random coil and polyproline type II helix, and they all sample highly extended conformations. Remarkably, the Ser-Asp dipeptide repeat region of SdrC exhibited nearly identical behavior in solution when compared to the Aap Pro/Gly-rich region, despite highly divergent sequence patterns, indicating conservation of function by various distinct staphylococcal CWA protein stalk regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA