Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Alzheimer Res ; 18(5): 414-427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34429047

RESUMO

BACKGROUND: A role for neutrophils in the pathogenesis of Alzheimer's disease (AD) is emerging. We previously showed that the neutrophil granule proteins cationic antimicrobial protein of 37 kDa (CAP37), cathepsin G (CG), and neutrophil elastase (NE) directly bind the amyloid-beta peptide Aß1-42, a central player in AD pathogenesis. CAP37, CG, and NE are serine proteases that can cleave Aß1-42 at different sites and with different catalytic activities. OBJECTIVE: In this study, we compared the effects of these three proteins on Aß1-42 fibrillation and neurotoxicity. METHODS: Using mass spectrometry and in vitro aggregation assay, we found that NE and CG efficiently cleave Aß1-42. This cleavage correlates well with the inhibition of Aß1-42 aggregation into fibrils. In contrast, CAP37 did not efficiently cleave Aß1-42, but was still able to inhibit its fibrillation, most likely through a quenching effect. Inhibition of Aß1-42 aggregation by NE and CG neutralized its toxicity measured in cultured neurons. In contrast, inhibition of Aß1-42 aggregation by CAP37 did not inhibit its neurotoxicity. RESULTS: We found that a peptide derived from CAP37 could mimic the quenching and inhibition of Aß1-42 aggregation effects of the full-length protein. Additionally, this peptide was able to inhibit the neurotoxicity of the most toxic Aß1-42 aggregate, an effect that was not found with the full-length CAP37. CONCLUSION: These results shed light on the mechanisms of action of neutrophil granule proteins with regard to inhibition of Aß1-42 aggregation and neurotoxicity and open up a possible strategy for the discovery of new disease-modifying drugs for AD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Neutrófilos/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/metabolismo , Catepsina G/metabolismo , Humanos , Técnicas In Vitro , Elastase de Leucócito/metabolismo , Camundongos
2.
Microbiology (Reading) ; 167(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34032564

RESUMO

Bacillus cereus is recognized as a causative agent of gastrointestinal syndromes, but can also cause a devastating form of intraocular infection known as endophthalmitis. We have previously reported that the PlcR/PapR master virulence factor regulator system regulates intraocular virulence, and that the S-layer protein (SlpA) contributes to the severity of B. cereus endophthalmitis. To better understand the role of other B. cereus virulence genes in endophthalmitis, expression of a subset of factors was measured at the midpoint of disease progression in a murine model of endophthalmitis by RNA-Seq. Several cytolytic toxins were expressed at significantly higher levels in vivo than in BHI. The virulence regulators codY, gntR, and nprR were also expressed in vivo. However, at this timepoint, plcR/papR was not detectable, although we previously reported that a B. cereus mutant deficient in PlcR was attenuated in the eye. The motility-related genes fla, fliF, and motB, and the chemotaxis-related gene cheA were detected during infection. We have shown previously that motility and chemotaxis phenotypes are important in B. cereus endophthalmitis. The sodA2 variant of manganese superoxide dismutase was the most highly expressed gene in vivo. Expression of the surface layer protein gene, slpA, an activator of Toll-like receptors (TLR)-2 and -4, was also detected during infection, albeit at low levels. Genes expressed in a mouse model of Bacillus endophthalmitis might play crucial roles in the unique virulence of B. cereus endophthalmitis, and serve as candidates for novel therapies designed to attenuate the severity of this often blinding infection.


Assuntos
Bacillus cereus/metabolismo , Bacillus cereus/patogenicidade , Endoftalmite/microbiologia , Animais , Bacillus cereus/genética , Bacillus cereus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Virulência
3.
J Transl Med ; 18(1): 428, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176788

RESUMO

Glioblastoma multiforme (GBM) is the most common malignant brain cancer that invades normal brain tissue and impedes surgical eradication, resulting in early local recurrence and high mortality. In addition, most therapeutic agents lack permeability across the blood brain barrier (BBB), further reducing the efficacy of chemotherapy. Thus, effective treatment against GBM requires tumor specific targets and efficient intracranial drug delivery. With the most recent advances in immunotherapy, genetically engineered T cells with chimeric antigen receptors (CARs) are becoming a promising approach for treating cancer. By transducing T lymphocytes with CAR constructs containing a tumor-associated antigen (TAA) recognition domain linked to the constant regions of a signaling T cell receptor, CAR T cells may recognize a predefined TAA with high specificity in a non-MHC restricted manner, and is independent of antigen processing. Active T cells can travel across the BBB, providing additional advantage for drug delivery and tumor targeting. Here we review the CAR design and technical innovations, the major targets that are in pre-clinical and clinical development with a focus on GBM, and multiple strategies developed to improve CAR T cell efficacy.


Assuntos
Glioblastoma , Receptores de Antígenos Quiméricos , Terapia Baseada em Transplante de Células e Tecidos , Glioblastoma/terapia , Humanos , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Linfócitos T
4.
Neurooncol Adv ; 2(1): vdaa067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642717

RESUMO

BACKGROUND: Aberrant MET receptor tyrosine kinase (RTK) activation leads to invasive tumor growth in different types of cancer. Overexpression of MET and its ligand hepatocyte growth factor (HGF) occurs more frequently in glioblastoma (GBM) than in low-grade gliomas. Although we have shown previously that HGF-autocrine activation predicts sensitivity to MET tyrosine kinase inhibitors (TKIs) in GBM, whether it initiates tumorigenesis remains elusive. METHODS: Using a well-established Sleeping Beauty (SB) transposon strategy, we injected human HGF and MET cDNA together with a short hairpin siRNA against Trp53 (SB-hHgf.Met.ShP53) into the lateral ventricle of neonatal mice to induce spontaneous glioma initiation and characterized the tumors with H&E and immunohistochemistry analysis. Glioma sphere cells also were isolated for measuring the sensitivity to specific MET TKIs. RESULTS: Mixed injection of SB-hHgf.Met.ShP53 plasmids induced de novo glioma formation with invasive tumor growth accompanied by HGF and MET overexpression. While glioma stem cells (GSCs) are considered as the tumor-initiating cells in GBM, both SB-hHgf.Met.ShP53 tumor sections and glioma spheres harvested from these tumors expressed GSC markers nestin, GFAP, and Sox 2. Moreover, specific MET TKIs significantly inhibited tumor spheres' proliferation and MET/MAPK/AKT signaling. CONCLUSIONS: Overexpression of the HGF/MET axis along with p53 attenuation may transform neural stem cells into GSCs, resulting in GBM formation in mice. These tumors are primarily driven by the MET RTK pathway activation and are sensitive to MET TKIs. The SB-hHgf.Met.ShP53 spontaneous mouse glioma model provides a useful tool for studying GBM tumor biology and MET-targeting therapeutics.

5.
Microorganisms ; 8(4)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331252

RESUMO

Bacillus cereus produces many factors linked to pathogenesis and is recognized for causing gastrointestinal toxemia and infections. B. cereus also causes a fulminant and often blinding intraocular infection called endophthalmitis. We reported that the PlcR/PapR system regulates intraocular virulence, but the specific factors that contribute to B. cereus virulence in the eye remain elusive. Here, we compared gene expression in ex vivo vitreous humor with expression in Luria Bertani (LB) and Brain Heart Infusion (BHI) broth by RNA-Seq. The expression of several cytolytic toxins in vitreous was less than or similar to levels observed in BHI or LB. Regulators of virulence genes, including PlcR/PapR, were expressed in vitreous. PlcR/PapR was expressed at low levels, though we reported that PlcR-deficient B. cereus was attenuated in the eye. Chemotaxis and motility genes were expressed at similar levels in LB and BHI, but at low to undetectable levels in vitreous, although motility is an important phenotype for B. cereus in the eye. Superoxide dismutase, a potential inhibitor of neutrophil activity in the eye during infection, was the most highly expressed gene in vitreous. Genes previously reported to be important to intraocular virulence were expressed at low levels in vitreous under these conditions, possibly because in vivo cues are required for higher level expression. Genes expressed in vitreous may contribute to the unique virulence of B. cereus endophthalmitis, and future analysis of the B. cereus virulome in the eye will identify those expressed in vivo, which could potentially be targeted to arrest virulence.

6.
Invest Ophthalmol Vis Sci ; 61(4): 16, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32298435

RESUMO

Purpose: Corneal abrasion is a common eye injury, and its resolution can be seriously complicated by bacterial infection. We showed that topical application of the cationic antimicrobial protein of 37 kDa (CAP37) promotes corneal re-epithelialization in mice, and peptides derived from CAP37 can recapitulate the antibacterial and wound-healing effects of the full-length protein. The current study was designed to identify the molecular mechanisms mediating the wound-healing effect of CAP37 and derived bioactive peptides. Methods: We used a TriCEPS-based, ligand-receptor glycocapture method to identify the binding partners of CAP37 on live human corneal epithelial cells using the hTCEpi cell line. We used an ELISA method to confirm binding with identified partners and test the binding with CAP37-derived peptides. We used a reporter cell line to measure activation of the identified membrane receptor by CAP37 and derived peptides. Results: We pulled down S100 calcium-binding protein A9 (S100A9) as a binding partner of CAP37 and found that CAP37 and four derived peptides encompassing two regions of CAP37 bind S100A9 with high affinities. We found that CAP37 and the S100A9-binding peptides could also directly interact with the Toll-like receptor 4 (TLR4), a known receptor for S100A9. CAP37 and one peptide partially activated TLR4. The other three peptides did not activate TLR4. Finally, we found that CAP37 and all four peptides could inhibit the activation of TLR4 by S100A9. Conclusions: This study identifies a mechanism of action for CAP37 and derived antimicrobial peptides that may restrain inflammatory responses to corneal injury and favor corneal re-epithelialization.


Assuntos
Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Proteínas Sanguíneas/uso terapêutico , Calgranulina B/farmacologia , Lesões da Córnea/tratamento farmacológico , Epitélio Corneano/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Cicatrização/efeitos dos fármacos , Administração Oftálmica , Animais , Calgranulina B/metabolismo , Linhagem Celular , Cromatografia Líquida , Lesões da Córnea/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Epitélio Corneano/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Soluções Oftálmicas , Espectrometria de Massas em Tandem
7.
mSphere ; 4(3)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092603

RESUMO

Intraocular infections are prevalent after traumatic injuries or after common ocular surgeries. Infections cause inflammation that can damage the retina and architecture of the eye, often resulting in poor visual outcomes. Severe cases may result in blindness or require enucleation of the eye. Treatments for intraocular infections include intravitreal antibiotics and corticosteroids or surgical vitrectomy in serious cases. The increase in multidrug-resistant infections calls for novel treatment options. In the present study, a biomimetic erythrocyte-derived nanosponge was tested for the ability to neutralize pore-forming toxins from the most frequent Gram-positive bacterial causes of intraocular infections (Staphylococcus aureus, Enterococcus faecalis, Streptococcus pneumoniae, and Bacillus cereus). Nanosponge pretreatment of supernatants reduced hemolytic activity in vitro. In a murine sterile endophthalmitis model, nanosponge pretreatment of injected supernatants resulted in greater retinal function and less ocular pathology compared to that in eyes injected with untreated supernatants from all pathogens except methicillin-resistant S. aureus In a murine bacterial endophthalmitis model, treatment with gatifloxacin and gatifloxacin-nanosponges reduced intraocular bacterial burdens, except in the case of methicillin-sensitive S. aureus For all pathogens, eyes in both treatment groups showed decreased ocular pathology and inflammation. Overall, reductions in retinal function loss afforded by gatifloxacin-nanosponge treatment were significant for E. faecalis, S. pneumoniae, and methicillin-resistant S. aureus but not for B. cereus and methicillin-sensitive S. aureus These results suggest that clinical improvements in intraocular infections following nanosponge treatment were dependent on the complexity and types of toxins produced. Nanosponges might serve as an adjunctive therapy for the treatment of ocular infections.IMPORTANCE Endophthalmitis is a blinding consequence of bacterial invasion of the interior of the eye. Because of increases in the numbers of ocular surgeries and intraocular injections, the incidence of endophthalmitis is steadily increasing. Staphylococcus aureus, Enterococcus faecalis, Streptococcus pneumoniae, and Bacillus cereus are leading causes of infection following ocular procedures and trauma and are increasingly more difficult to treat due to multidrug resistance. Each of these pathogens produces pore-forming toxins that contribute to the pathogenesis of endophthalmitis. Treatment of these infections with antibiotics alone is insufficient to prevent damage to the retina and vision loss. Therefore, novel therapeutics are needed that include agents that neutralize bacterial pore-forming toxins. Here, we demonstrate that biomimetic nanosponges neutralize pore-forming toxins from these ocular pathogens and aid in preserving retinal function. Nanosponges may represent a new form of adjunct antitoxin therapy for serious potentially blinding intraocular infections.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Materiais Biomiméticos , Infecções Oculares Bacterianas/tratamento farmacológico , Nanoestruturas/uso terapêutico , Animais , Eritrócitos/química , Gatifloxacina/uso terapêutico , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/química , Nanotecnologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polímeros/química , Coelhos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos
8.
mSphere ; 2(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29202038

RESUMO

Intraocular infections are a potentially blinding complication of common ocular surgeries and traumatic eye injuries. Bacterial toxins synthesized in the eye can damage intraocular tissue, often resulting in poor visual outcomes. Enteroccocus faecalis causes blinding infections and is responsible for 8 to 17% of postoperative endophthalmitis cases. These infections are increasingly difficult to treat due to the emergence of multidrug-resistant strains. Virulent E. faecalis isolates secrete a pore-forming bicomponent cytolysin that contributes to retinal tissue damage during endophthalmitis. We hypothesized that a biomimetic nanosponge, which mimics erythrocytes, might adsorb subunits of the cytolysin and reduce retinal damage, protecting vision. To test the efficacy of nanosponges in neutralizing the cytolysin in vitro, hemoglobin release assays were performed on culture supernatants from cytolysin-producing E. faecalis with and without preincubation with nanosponges. Treatment with nanosponges for 30 min reduced hemolytic activity by ~70%. To determine whether nanosponges could neutralize the cytolysin in vivo, electroretinography was performed on mice 24 h after intravitreal injection with cytolysin-containing supernatants treated with nanosponges. Pretreatment of cytolysin-containing supernatants with nanosponges increased the A-wave retention from 12.2% to 65.5% and increased the B-wave retention from 21.0% to 77.0%. Histology revealed that in nanosponge-treated eyes, retinas remained intact and attached, with little to no damage. Rabbit nanosponges were also nontoxic and noninflammatory when injected into mouse eyes. In an experimental murine model of E. faecalis endophthalmitis, injection of nanosponges into the vitreous 6 h after infection with a wild-type cytolysin-producing strain increased A-wave retention from 5.9% to 31% and increased B-wave retention from 12.6% to 27.8%. Together, these results demonstrated that biomimetic nanosponges neutralized cytolysin activity and protected the retinas from damage. These results suggest that this novel strategy might also protect eyes from the activities of pore-forming toxins of other virulent ocular bacterial pathogens. IMPORTANCE Endophthalmitis is a serious, potentially blinding infection that can result in vision loss, leaving a patient with only the ability to count fingers, or it may require enucleation of the globe. The incidence of postoperative endophthalmitis has markedly increased over the past 2 decades, paralleling the rise in ocular surgeries and intravitreal therapies. E. faecalis is a leading cause of infection following ocular procedures, and such infections are increasingly difficult to treat due to multidrug resistance. Cytolysin is the primary virulence factor responsible for retinal tissue damage in E. faecalis eye infections. Treatment of these infections with antibiotics alone does not impede ocular damage and loss of visual function. Pore-forming toxins (PFTs) have been established as major virulence factors in endophthalmitis caused by several bacterial species. These facts establish a critical need for a novel therapy to neutralize bacterial PFTs such as cytolysin. Here, we demonstrate that biomimetic nanosponges neutralize cytolysin, protect the retina, preserve vision, and may provide an adjunct detoxification therapy for bacterial infections.

9.
Exp Eye Res ; 159: 69-76, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28336259

RESUMO

Bacterial endophthalmitis is a potentially blinding intraocular infection. The bacterium Bacillus cereus causes a devastating form of this disease which progresses rapidly, resulting in significant inflammation and loss of vision within a few days. The outer surface of B. cereus incites the intraocular inflammatory response, likely through interactions with innate immune receptors such as TLRs. This study analyzed the role of B. cereus pili, adhesion appendages located on the bacterial surface, in experimental endophthalmitis. To test the hypothesis that the presence of pili contributed to intraocular inflammation and virulence, we analyzed the progress of experimental endophthalmitis in mouse eyes infected with wild type B. cereus (ATCC 14579) or its isogenic pilus-deficient mutant (ΔbcpA-srtD-bcpB or ΔPil). One hundred CFU were injected into the mid-vitreous of one eye of each mouse. Infections were analyzed by quantifying intraocular bacilli and retinal function loss, and by histology from 0 to 12 h postinfection. In vitro growth and hemolytic phenotypes of the infecting strains were also compared. There was no difference in hemolytic activity (1:8 titer), motility, or in vitro growth (p > 0.05, every 2 h, 0-18 h) between wild type B. cereus and the ΔPil mutant. However, infected eyes contained greater numbers of wild type B. cereus than ΔPil during the infection course (p ≤ 0.05, 3-12 h). Eyes infected with wild type B. cereus experienced greater losses in retinal function than eyes infected with the ΔPil mutant, but the differences were not always significant. Eyes infected with ΔPil or wild type B. cereus achieved similar degrees of severe inflammation. The results indicated that the intraocular growth of pilus-deficient B. cereus may have been better controlled, leading to a trend of greater retinal function in eyes infected with the pilus-deficient strain. Although this difference was not enough to significantly alter the severity of the inflammatory response, these results suggest a potential role for pili in protecting B. cereus from clearance during the early stages of endophthalmitis, which is a newly described virulence mechanism for this organism and this infection.


Assuntos
Bacillus cereus/patogenicidade , Endoftalmite/microbiologia , Infecções Oculares Bacterianas/microbiologia , Animais , Humor Aquoso/microbiologia , Modelos Animais de Doenças , Eletrorretinografia , Endoftalmite/diagnóstico , Infecções Oculares Bacterianas/diagnóstico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Retina/microbiologia , Retina/patologia , Retina/fisiopatologia
10.
Genom Data ; 10: 54-60, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27699150

RESUMO

Microbacterium oleivorans is a predominant member of hydrocarbon-contaminated environments. We here report on the genomic analysis of M. oleivorans strain Wellendorf that was isolated from an indoor door handle. The partial genome of M. oleivorans strain Wellendorf consists of 2,916,870 bp of DNA with 2831 protein-coding genes and 49 RNA genes. The organism appears to be a versatile mesophilic heterotroph potentially capable of hydrolysis a suite of carbohydrates and amino acids. Genomic analysis revealed metabolic versatility with genes involved in the metabolism and transport of glucose, fructose, rhamnose, galactose, xylose, arabinose, alanine, aspartate, asparagine, glutamate, serine, glycine, threonine and cysteine. This is the first detailed analysis of a Microbacterium oleivorans genome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA