Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(7): 1387-1407, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33274502

RESUMO

Ecosystems integrity and services are threatened by anthropogenic global changes. Mitigating and adapting to these changes require knowledge of ecosystem functioning in the expected novel environments, informed in large part through experimentation and modelling. This paper describes 13 advanced controlled environment facilities for experimental ecosystem studies, herein termed ecotrons, open to the international community. Ecotrons enable simulation of a wide range of natural environmental conditions in replicated and independent experimental units while measuring various ecosystem processes. This capacity to realistically control ecosystem environments is used to emulate a variety of climatic scenarios and soil conditions, in natural sunlight or through broad-spectrum lighting. The use of large ecosystem samples, intact or reconstructed, minimizes border effects and increases biological and physical complexity. Measurements of concentrations of greenhouse trace gases as well as their net exchange between the ecosystem and the atmosphere are performed in most ecotrons, often quasi continuously. The flow of matter is often tracked with the use of stable isotope tracers of carbon and other elements. Equipment is available for measurements of soil water status as well as root and canopy growth. The experiments ran so far emphasize the diversity of the hosted research. Half of them concern global changes, often with a manipulation of more than one driver. About a quarter deal with the impact of biodiversity loss on ecosystem functioning and one quarter with ecosystem or plant physiology. We discuss how the methodology for environmental simulation and process measurements, especially in soil, can be improved and stress the need to establish stronger links with modelling in future projects. These developments will enable further improvements in mechanistic understanding and predictive capacity of ecotron research which will play, in complementarity with field experimentation and monitoring, a crucial role in exploring the ecosystem consequences of environmental changes.


Assuntos
Ecossistema , Ciência Ambiental , Biodiversidade , Ecologia , Solo
2.
Plants (Basel) ; 9(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854373

RESUMO

The circadian clock is a molecular timer of metabolism that affects the diurnal pattern of stomatal conductance (gs), amongst other processes, in a broad array of plant species. The function of circadian gs regulation remains unknown and here, we test whether circadian regulation helps to optimize diurnal variations in stomatal conductance. We subjected bean (Phaseolus vulgaris) and cotton (Gossypium hirsutum) canopies to fixed, continuous environmental conditions of photosynthetically active radiation, temperature, and vapour pressure deficit (free-running conditions) over 48 h. We modelled gs variations in free-running conditions to test for two possible optimizations of stomatal behaviour under circadian regulation: (i) that stomata operate to maintain constant marginal water use efficiency; or (ii) that stomata maximize C net gain minus the costs or risks of hydraulic damage. We observed that both optimization models predicted gs poorly under free-running conditions, indicating that circadian regulation does not directly lead to stomatal optimization. We also demonstrate that failure to account for circadian variation in gs could potentially lead to biased parameter estimates during calibrations of stomatal models. More broadly, our results add to the emerging field of plant circadian ecology, where circadian controls may partially explain leaf-level patterns observed in the field.

3.
J Exp Bot ; 71(1): 370-385, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557303

RESUMO

Extreme climatic events (ECEs) such as droughts and heat waves affect ecosystem functioning and species turnover. This study investigated the effect of elevated CO2 on species' resilience to ECEs. Monoliths of intact soil and their plant communities from an upland grassland were exposed to 2050 climate scenarios with or without an ECE under ambient (390 ppm) or elevated (520 ppm) CO2. Ecophysiological traits of two perennial grasses (Dactylis glomerata and Holcus lanatus) were measured before, during, and after ECE. At similar soil water content, leaf elongation was greater under elevated CO2 for both species. The resilience of D. glomerata increased under enhanced CO2 (+60%) whereas H. lanatus mostly died during ECE. D. glomerata accumulated 30% more fructans, which were more highly polymerized, and 4-fold less sucrose than H. lanatus. The fructan concentration in leaf meristems was significantly increased under elevated CO2. Their relative abundance changed during the ECE, resulting in a more polymerized assemblage in H. lanatus and a more depolymerized assemblage in D. glomerata. The ratio of low degree of polymerization fructans to sucrose in leaf meristems was the best predictor of resilience across species. This study underlines the role of carbohydrate metabolism and the species-dependent effect of elevated CO2 on the resilience of grasses to ECE.


Assuntos
Metabolismo dos Carboidratos , Mudança Climática , Dactylis/fisiologia , Clima Extremo , Holcus/fisiologia , Meristema/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Clima , Especificidade da Espécie
4.
PLoS One ; 14(1): e0204715, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30703101

RESUMO

Numerous experiments have shown positive diversity effects on plant productivity, but little is known about related processes of carbon gain and allocation. We investigated these processes in a controlled environment (Montpellier European Ecotron) applying a continuous 13CO2 label for three weeks to 12 soil-vegetation monoliths originating from a grassland biodiversity experiment (Jena Experiment) and representing two diversity levels (4 and 16 sown species). Plant species richness did not affect community- and species-level 13C abundances neither in total biomass nor in non-structural carbohydrates (NSC). Community-level 13C excess tended to be higher in the 16-species than in the 4-species mixtures. Community-level 13C excess was positively related to canopy leaf nitrogen (N), i.e. leaf N per unit soil surface. At the species level, shoot 13C abundances varied among plant functional groups and were larger in legumes and tall herbs than in grasses and small herbs, and correlated positively with traits as leaf N concentrations, stomatal conductance and shoot height. The 13C abundances in NSC were larger in transport sugars (sucrose, raffinose-family oligosaccharides) than in free glucose, fructose and compounds of the storage pool (starch) suggesting that newly assimilated carbon is to a small portion allocated to storage. Our results emphasize that the functional composition of communities is key in explaining carbon assimilation in grasslands.


Assuntos
Biodiversidade , Isótopos de Carbono/metabolismo , Pradaria , Poaceae/metabolismo , Solo/química , Isótopos de Carbono/análise , Nitrogênio/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Poaceae/química , Açúcares/metabolismo
5.
Plant Cell Environ ; 40(7): 1153-1162, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28098350

RESUMO

There is increasing evidence that the circadian clock is a significant driver of photosynthesis that becomes apparent when environmental cues are experimentally held constant. We studied whether the composition of photosynthetic pigments is under circadian regulation, and whether pigment oscillations lead to rhythmic changes in photochemical efficiency. To address these questions, we maintained canopies of bean and cotton, after an entrainment phase, under constant (light or darkness) conditions for 30-48 h. Photosynthesis and quantum yield peaked at subjective noon, and non-photochemical quenching peaked at night. These oscillations were not associated with parallel changes in carbohydrate content or xanthophyll cycle activity. We observed robust oscillations of Chl a/b during constant light in both species, and also under constant darkness in bean, peaking when it would have been night during the entrainment (subjective nights). These oscillations could be attributed to the synthesis and/or degradation of trimeric light-harvesting complex II (reflected by the rhythmic changes in Chl a/b), with the antenna size minimal at night and maximal around subjective noon. Considering together the oscillations of pigments and photochemistry, the observed pattern of changes is counterintuitive if we assume that the plant strategy is to avoid photodamage, but consistent with a strategy where non-stressed plants maximize photosynthesis.


Assuntos
Ritmo Circadiano/fisiologia , Gossypium/fisiologia , Phaseolus/fisiologia , Fotossíntese/fisiologia , Pigmentos Biológicos/metabolismo , Metabolismo dos Carboidratos , Clorofila/metabolismo , Clorofila A , Folhas de Planta/metabolismo
6.
Ecology ; 97(8): 2044-2054, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27859204

RESUMO

The impact of species richness and functional diversity of plants on ecosystem water vapor fluxes has been little investigated. To address this knowledge gap, we combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/monoliths originating from a long-term biodiversity experiment (The Jena Experiment) and a modeling approach. Our goals were (1) quantifying the impact of plant species richness (four vs. 16 species) on day- and nighttime ecosystem water vapor fluxes; (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model; and (3) identifying the most parsimonious predictors of water vapor fluxes using plant functional-trait-based metrics such as functional diversity and community weighted means. Daytime measured and modeled evapotranspiration were significantly higher in the higher plant diversity treatment, suggesting increased water acquisition. The SW model suggests that, at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while, at higher species richness, the proportion of ecosystem transpiration (a productivity-related water flux) increased. While it is well established that LAI controls ecosystem transpiration, here we also identified that the diversity of leaf nitrogen concentration among species in a community is a consistent predictor of ecosystem water vapor fluxes during daytime. The results provide evidence that, at the peak of the growing season, higher leaf area index (LAI) and lower percentage of bare ground at high plant diversity diverts more of the available water to transpiration, a flux closely coupled with photosynthesis and productivity. Higher rates of transpiration presumably contribute to the positive effect of diversity on productivity.


Assuntos
Biodiversidade , Pradaria , Plantas , Ecologia , Ecossistema , Modelos Teóricos , Vapor , Água
7.
Gigascience ; 5(1): 43, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27765071

RESUMO

BACKGROUND: Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO2 and H2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (no variation in temperature, radiation, or other environmental cues). RESULTS: We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20-79 % of the daily variation range in CO2 and H2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8-17 % in commonly used stomatal conductance models. CONCLUSIONS: Our results show that circadian controls affect diurnal CO2 and H2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Circadian controls act as a 'memory' of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.


Assuntos
Dióxido de Carbono/análise , Ritmo Circadiano , Folhas de Planta/metabolismo , Água/análise , Relógios Circadianos , Ecossistema , Gossypium/fisiologia , Phaseolus/fisiologia , Fotossíntese , Estômatos de Plantas/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(22): 6224-9, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185934

RESUMO

Extreme climatic events (ECEs) such as droughts and heat waves are predicted to increase in intensity and frequency and impact the terrestrial carbon balance. However, we lack direct experimental evidence of how the net carbon uptake of ecosystems is affected by ECEs under future elevated atmospheric CO2 concentrations (eCO2). Taking advantage of an advanced controlled environment facility for ecosystem research (Ecotron), we simulated eCO2 and extreme cooccurring heat and drought events as projected for the 2050s and analyzed their effects on the ecosystem-level carbon and water fluxes in a C3 grassland. Our results indicate that eCO2 not only slows down the decline of ecosystem carbon uptake during the ECE but also enhances its recovery after the ECE, as mediated by increases of root growth and plant nitrogen uptake induced by the ECE. These findings indicate that, in the predicted near future climate, eCO2 could mitigate the effects of extreme droughts and heat waves on ecosystem net carbon uptake.


Assuntos
Ciclo do Carbono/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Carbono/metabolismo , Secas , Temperatura Alta , Folhas de Planta/crescimento & desenvolvimento , Solo/química , Mudança Climática , Pradaria , Folhas de Planta/efeitos dos fármacos
9.
Sci Rep ; 5: 10975, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26074373

RESUMO

Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.


Assuntos
Gossypium/fisiologia , Modelos Estatísticos , Phaseolus/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Água/química , Atmosfera , Dióxido de Carbono/química , Ecossistema , Fotoperíodo , Solo/química , Temperatura , Volatilização , Água/metabolismo
10.
Ecol Lett ; 17(4): 435-44, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24393400

RESUMO

Little is known about the role of plant functional diversity for ecosystem-level carbon (C) fluxes. To fill this knowledge gap, we translocated monoliths hosting communities with four and 16 sown species from a long-term grassland biodiversity experiment ('The Jena Experiment') into a controlled environment facility for ecosystem research (Ecotron). This allowed quantifying the effects of plant diversity on ecosystem C fluxes as well as three parameters of C uptake efficiency (water and nitrogen use efficiencies and apparent quantum yield). By combining data on ecosystem C fluxes with vegetation structure and functional trait-based predictors, we found that increasing plant species and functional diversity led to higher gross and net ecosystem C uptake rates. Path analyses and light response curves unravelled the diversity of leaf nitrogen concentration in the canopy as a key functional predictor of C fluxes, either directly or indirectly via LAI and aboveground biomass.


Assuntos
Ciclo do Carbono , Carbono/metabolismo , Ecossistema , Plantas/metabolismo , Biodiversidade , Folhas de Planta/química , Plantas/química , Água/metabolismo
11.
New Phytol ; 163(3): 573-584, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33873752

RESUMO

• Among oak species, Quercus ilex is classified as a monoterpene emitter and Q. suber is mainly known as a nonisoprenoid emitter. The extent and origin of this diversification is unknown. • We examined intra- and interspecific emission variability in two mixed stands which differed in their level of hybridization and reciprocal genetic introgression based on variations in cytoplasmic (chloroplast DNA) and nuclear (allozyme) markers. • At both sites all trees identified as Q. ilex, or as recent descendants from Q. ilex × Q. suber hybrids, emitted monoterpenes. Of Q. suber trees (genetically introgressed or not by Q. ilex), 91% were also monoterpene emitters, and the remainder nonemitters. One tree identified as a Q. canariensis × Q. ilex hybrid emitted both isoprene and monoterpenes. Compared with Q. ilex, the standard emission rate of Q. suber was higher in summer and lower in autumn. Both species emitted the same monoterpenes, proportions of which showed significant intra- and interspecific variability. • The results suggest that Q. suber populations in the French Mediterranean intrinsically emit monoterpenes, and that gene flow between oak species contributes to diversification of emission signatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...