Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2302642, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683053

RESUMO

Epicardial cells (EPIs) form the outer layer of the heart and play an important role in development and disease. Current heart-on-a-chip platforms still do not fully mimic the native cardiac environment due to the absence of relevant cell types, such as EPIs. Here, using the Biowire II platform, engineered cardiac tissues with an epicardial outer layer and inner myocardial structure are constructed, and an image analysis approach is developed to track the EPI cell migration in a beating myocardial environment. Functional properties of EPI cardiac tissues improve over two weeks in culture. In conditions mimicking ischemia reperfusion injury (IRI), the EPI cardiac tissues experience less cell death and a lower impact on functional properties. EPI cell coverage is significantly reduced and more diffuse under normoxic conditions compared to the post-IRI conditions. Upon IRI, migration of EPI cells into the cardiac tissue interior is observed, with contributions to alpha smooth muscle actin positive cell population. Altogether, a novel heart-on-a-chip model is designed to incorporate EPIs through a formation process that mimics cardiac development, and this work demonstrates that EPI cardiac tissues respond to injury differently than epicardium-free controls, highlighting the importance of including EPIs in heart-on-a-chip constructs that aim to accurately mimic the cardiac environment.

2.
J Biomed Mater Res A ; 112(4): 492-511, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37909362

RESUMO

Recent advances in both cardiac tissue engineering and hearts-on-a-chip are grounded in new biomaterial development as well as the employment of innovative fabrication techniques that enable precise control of the mechanical, electrical, and structural properties of the cardiac tissues being modelled. The elongated structure of cardiomyocytes requires tuning of substrate properties and application of biophysical stimuli to drive its mature phenotype. Landmark advances have already been achieved with induced pluripotent stem cell-derived cardiac patches that advanced to human testing. Heart-on-a-chip platforms are now commonly used by a number of pharmaceutical and biotechnology companies. Here, we provide an overview of cardiac physiology in order to better define the requirements for functional tissue recapitulation. We then discuss the biomaterials most commonly used in both cardiac tissue engineering and heart-on-a-chip, followed by the discussion of recent representative studies in both fields. We outline significant challenges common to both fields, specifically: scalable tissue fabrication and platform standardization, improving cellular fidelity through effective tissue vascularization, achieving adult tissue maturation, and ultimately developing cryopreservation protocols so that the tissues are available off the shelf.


Assuntos
Células-Tronco Pluripotentes Induzidas , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Miócitos Cardíacos , Materiais Biocompatíveis , Dispositivos Lab-On-A-Chip , Miocárdio
3.
Arterioscler Thromb Vasc Biol ; 43(12): 2241-2255, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823265

RESUMO

Vascular diseases, such as atherosclerosis and thrombosis, are major causes of morbidity and mortality worldwide. Traditional in vitro models for studying vascular diseases have limitations, as they do not fully recapitulate the complexity of the in vivo microenvironment. Organ-on-a-chip systems have emerged as a promising approach for modeling vascular diseases by incorporating multiple cell types, mechanical and biochemical cues, and fluid flow in a microscale platform. This review provides an overview of recent advancements in engineering organ-on-a-chip systems for modeling vascular diseases, including the use of microfluidic channels, ECM (extracellular matrix) scaffolds, and patient-specific cells. We also discuss the limitations and future perspectives of organ-on-a-chip for modeling vascular diseases.


Assuntos
Sistemas Microfisiológicos , Doenças Vasculares , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica , Matriz Extracelular/metabolismo , Doenças Vasculares/terapia , Doenças Vasculares/metabolismo
4.
Biomaterials ; 301: 122255, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37651922

RESUMO

To better understand sodium channel (SCN5A)-related cardiomyopathies, we generated ventricular cardiomyocytes from induced pluripotent stem cells obtained from a dilated cardiomyopathy patient harbouring the R222Q mutation, which is only expressed in adult SCN5A isoforms. Because the adult SCN5A isoform was poorly expressed, without functional differences between R222Q and control in both embryoid bodies and cell sheet preparations (cultured for 29-35 days), we created heart-on-a-chip biowires which promote myocardial maturation. Indeed, biowires expressed primarily adult SCN5A with R222Q preparations displaying (arrhythmogenic) short action potentials, altered Na+ channel biophysical properties and lower contractility compared to corrected controls. Comprehensive RNA sequencing revealed differential gene regulation between R222Q and control biowires in cellular pathways related to sarcoplasmic reticulum and dystroglycan complex as well as biological processes related to calcium ion regulation and action potential. Additionally, R222Q biowires had marked reductions in actin expression accompanied by profound sarcoplasmic disarray, without differences in cell composition (fibroblast, endothelial cells, and cardiomyocytes) compared to corrected biowires. In conclusion, we demonstrate that in addition to altering cardiac electrophysiology and Na+ current, the R222Q mutation also causes profound sarcomere disruptions and mechanical destabilization. Possible mechanisms for these observations are discussed.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Miócitos Cardíacos , Cardiomiopatia Dilatada/genética , Células Endoteliais , Dispositivos Lab-On-A-Chip
5.
Biofabrication ; 15(3)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37230083

RESUMO

We developed a heart-on-a-chip platform that integrates highly flexible, vertical, 3D micropillar electrodes for electrophysiological recording and elastic microwires for the tissue's contractile force assessment. The high aspect ratio microelectrodes were 3D-printed into the device using a conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). A pair of flexible, quantum dots/thermoplastic elastomer nanocomposite microwires were 3D printed to anchor the tissue and enable continuous contractile force assessment. The 3D microelectrodes and flexible microwires enabled unobstructed human iPSC-based cardiac tissue formation and contraction, suspended above the device surface, under both spontaneous beating and upon pacing with a separate set of integrated carbon electrodes. Recording of extracellular field potentials using the PEDOT:PSS micropillars was demonstrated with and without epinephrine as a model drug, non-invasively, along within situmonitoring of tissue contractile properties and calcium transients. Uniquely, the platform provides integrated profiling of electrical and contractile tissue properties, which is critical for proper evaluation of complex, mechanically and electrically active tissues, such as the heart muscle under both physiological and pathological conditions.


Assuntos
Elastômeros , Polímeros , Humanos , Microeletrodos , Impressão Tridimensional , Dispositivos Lab-On-A-Chip
6.
Commun Biol ; 5(1): 927, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36071206

RESUMO

Cultured meat can provide a sustainable and more ethical alternative to conventional meat. Most of the research in this field has been focused on developing muscle tissue, as it is the main component of meat products, while very few studies address cultured fat tissue, an essential component in the human diet and determinant of meat quality, flavor, juiciness, and tenderness. Here, we engineered bovine fat tissue for cultured meat and incorporated it within engineered bovine muscle tissue. Mesenchymal stem cells (MSCs) were derived from bovine adipose tissue and exhibited the typical phenotypic profile of adipose-derived MSCs. MSC adipogenic differentiation and maturation within alginate-based three-dimensional constructs were optimized to yield a fat-rich edible engineered tissue. Subsequently, a marble-like construct, composed of engineered bovine adipose and muscle tissues, was fabricated, mimicking inter- and intra-muscular fat structures.


Assuntos
Carbonato de Cálcio , Células-Tronco Mesenquimais , Adipogenia , Tecido Adiposo , Animais , Bovinos , Humanos , Carne
7.
Proc Natl Acad Sci U S A ; 119(38): e2207525119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095208

RESUMO

Progress in bottom-up synthetic biology has stimulated the development of synthetic cells (SCs), autonomous protein-manufacturing particles, as dynamic biomimetics for replacing diseased natural cells and addressing medical needs. Here, we report that SCs genetically encoded to produce proangiogenic factors triggered the physiological process of neovascularization in mice. The SCs were constructed of giant lipid vesicles and were optimized to facilitate enhanced protein production. When introduced with the appropriate genetic code, the SCs synthesized a recombinant human basic fibroblast growth factor (bFGF), reaching expression levels of up to 9⋅106 protein copies per SC. In culture, the SCs induced endothelial cell proliferation, migration, tube formation, and angiogenesis-related intracellular signaling, confirming their proangiogenic activity. Integrating the SCs with bioengineered constructs bearing endothelial cells promoted the remodeling of mature vascular networks, supported by a collagen-IV basement membrane-like matrix. In vivo, prolonged local administration of the SCs in mice triggered the infiltration of blood vessels into implanted Matrigel plugs without recorded systemic immunogenicity. These findings emphasize the potential of SCs as therapeutic platforms for activating physiological processes by autonomously producing biological drugs inside the body.


Assuntos
Células Artificiais , Fatores de Crescimento de Fibroblastos , Neovascularização Fisiológica , Animais , Células Artificiais/transplante , Movimento Celular , Proliferação de Células , Colágeno Tipo IV/metabolismo , Células Endoteliais/fisiologia , Fatores de Crescimento de Fibroblastos/biossíntese , Fatores de Crescimento de Fibroblastos/genética , Humanos , Camundongos , Biossíntese de Proteínas
8.
ACS Biomater Sci Eng ; 8(1): 232-241, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34905338

RESUMO

In the field of tissue engineering, evaluating newly formed vascular networks is considered a fundamental step in deciphering the processes underlying tissue development. Several common modalities exist to study vessel network formation and function. However, a proper methodology that allows through three-dimensional visualization of neovessels in a reproducible manner is required. Here, we describe in-depth exploration, visualization, and analysis of vessels within newly formed tissues by utilizing a contrast agent perfusion protocol and high-resolution microcomputed tomography. Bioengineered constructs consisting of porous, biocompatible, and biodegradable scaffolds are loaded with cocultures of adipose-derived microvascular endothelial cells (HAMECs) and dental pulp stem cells (DPSCs) and implanted in a rat femoral bundle model. After 14 days of in vivo maturation, we performed the optimized perfusion protocol to allow host penetrating vascular visualization and assessment within neotissues. Following high-resolution microCT scanning of DPSC:HAMEC explants, we performed the volumetric and spatial analysis of neovasculature. Eventually, the process was repeated with a previously published coculture system for prevascularization based on adipose-derived mesenchymal stromal cells (MSCs) and HAMECs. Overall, our approach allows a comprehensive understanding of vessel organization during engraftment and development of neotissues.


Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Tecido Adiposo/diagnóstico por imagem , Animais , Ratos , Engenharia Tecidual , Microtomografia por Raio-X
9.
Biofabrication ; 14(1)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34798628

RESUMO

Microtia is a small, malformed external ear, which occurs at an incidence of 1-10 per 10 000 births. Autologous reconstruction using costal cartilage is the most widely accepted surgical microtia repair technique. Yet, the method involves donor-site pain and discomfort and relies on the artistic skill of the surgeon to create an aesthetic ear. This study employed novel tissue engineering techniques to overcome these limitations by developing a clinical-grade, 3D-printed biodegradable auricle scaffold that formed stable, custom-made neocartilage implants. The unique scaffold design combined strategically reinforced areas to maintain the complex topography of the outer ear and micropores to allow cell adhesion for the effective production of stable cartilage. The auricle construct was computed tomography (CT) scan-based composed of a 3D-printed clinical-grade polycaprolactone scaffold loaded with patient-derived chondrocytes produced from either auricular cartilage or costal cartilage biopsies combined with adipose-derived mesenchymal stem cells. Cartilage formation was measured within the constructin vitro, and cartilage maturation and stabilization were observed 12 weeks after its subcutaneous implantation into a murine model. The proposed technology is simple and effective and is expected to improve aesthetic outcomes and reduce patient discomfort.


Assuntos
Microtia Congênita , Células-Tronco Mesenquimais , Animais , Condrócitos , Microtia Congênita/cirurgia , Cartilagem da Orelha , Humanos , Camundongos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais
10.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34326257

RESUMO

The lymphatic system is involved in various biological processes, including fluid transport from the interstitium into the venous circulation, lipid absorption, and immune cell trafficking. Despite its critical role in homeostasis, lymphangiogenesis (lymphatic vessel formation) is less widely studied than its counterpart, angiogenesis (blood vessel formation). Although the incorporation of lymphatic vasculature in engineered tissues or organoids would enable more precise mimicry of native tissue, few studies have focused on creating engineered tissues containing lymphatic vessels. Here, we populated thick collagen sheets with human lymphatic endothelial cells, combined with supporting cells and blood endothelial cells, and examined lymphangiogenesis within the resulting constructs. Our model required just a few days to develop a functional lymphatic vessel network, in contrast to other reported models requiring several weeks. Coculture of lymphatic endothelial cells with the appropriate supporting cells and intact PDGFR-ß signaling proved essential for the lymphangiogenesis process. Additionally, subjecting the constructs to cyclic stretch enabled the creation of complex muscle tissue aligned with the lymphatic and blood vessel networks, more precisely biomimicking native tissue. Interestingly, the response of developing lymphatic vessels to tensile forces was different from that of blood vessels; while blood vessels oriented perpendicularly to the stretch direction, lymphatic vessels mostly oriented in parallel to the stretch direction. Implantation of the engineered lymphatic constructs into a mouse abdominal wall muscle resulted in anastomosis between host and implant lymphatic vasculatures, demonstrating the engineered construct's potential functionality in vivo. Overall, this model provides a potential platform for investigating lymphangiogenesis and lymphatic disease mechanisms.


Assuntos
Polpa Dentária/fisiologia , Células Endoteliais/fisiologia , Linfangiogênese/fisiologia , Vasos Linfáticos/fisiologia , Engenharia Tecidual , Técnicas de Cocultura , Humanos , Vasos Linfáticos/citologia , Neovascularização Fisiológica , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Células-Tronco/fisiologia
11.
Adv Healthc Mater ; 9(20): e2000974, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32902147

RESUMO

The regeneration of injured spinal cord is hampered by the lack of vascular supply and neurotrophic support. Transplanting tissue-engineered constructs with developed vascular networks and neurotrophic factors, and further understanding the pattern of vessel growth in the remodeled spinal cord tissue are greatly desired. To this end, highly vascularized scaffolds embedded with human dental pulp stem cells (DPSCs) are fabricated, which possess paracrine-mediated angiogenic and neuroregenerative potentials. The potent pro-angiogenic effect of the prevascularized scaffolds is first demonstrated in a rat femoral bundle model, showing robust vessel growth and blood perfusion induced within these scaffolds postimplantation, as evidenced by laser speckle contrast imaging and 3D microCT dual imaging modalities. More importantly, in a rat complete spinal cord transection model, the implantation of these scaffolds to the injured spinal cords can also promote revascularization, as well as axon regeneration, myelin deposition, and sensory recovery. Furthermore, 3D microCT imaging and novel morphometric analysis on the remodeled spinal cord tissue demonstrate substantial regenerated vessels, more significantly in the sensory tract regions, which correlates with behavioral recovery following prevascularization treatment. Taken together, prevascularized DPSC-embedded constructs bear angiogenic and neurotrophic potentials, capable of augmenting and modulating SCI repair.


Assuntos
Regeneração Nervosa , Traumatismos da Medula Espinal , Animais , Axônios , Polpa Dentária , Humanos , Ratos , Medula Espinal , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/terapia , Células-Tronco , Alicerces Teciduais
12.
Bio Protoc ; 10(11): e3635, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659306

RESUMO

Exosomes, a subtype of extracellular vesicles, are nanovesicles of endocytic origin. Exosomes contain a plethora of proteins, lipids, and genetic materials of parent cells to facilitate intercellular communications. Tracking exosomes in vivo is fundamentally important to understand their biodistribution pattern and the mechanism of biological actions in experimental models. Until now, a number of tracking protocols have been developed, including fluorescence labeling, bioluminescence imaging, magnetic resonance imaging, and computed tomography (CT) tracking of exosomes. Recently, we have shown the tracking and quantification of exosomes in a spinal cord injury model, by using two tracking approaches. More specifically, following intranasal administration of gold nanoparticle-encapsulated exosomes to rats bearing complete spinal cord injury, exosomes in the whole central nervous system were tracked by using microCT, and quantified by using inductively coupled plasma and flame atomic absorption spectroscopy. In addition, optical imaging of fluorescently labeled exosomes was performed to understand the abundance of migrating exosomes in the spinal cord lesion, as compared to the healthy controls, and to further examine their affinity to different cell types in the lesion. Thus, the protocol presented here aids in the study of exosome biodistribution at both cellular and organ levels, in the context of spinal cord injury. This protocol will also enable researchers to better elucidate the fate of administered exosomes in other models of interest.

13.
Proc Natl Acad Sci U S A ; 116(8): 2955-2960, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718418

RESUMO

Graft vascularization remains one of the most critical challenges facing tissue-engineering experts in their attempt to create thick transplantable tissues and organs. In vitro prevascularization of engineered tissues has been suggested to promote rapid anastomosis between the graft and host vasculatures; however, thrombotic events have been reported upon graft implantation. Here, we aimed to determine whether in vitro vessel maturation in transplantable grafts can accelerate vascular integration and graft perfusion and prevent thrombotic events in the grafts. To this end, endothelial cells and fibroblasts were cocultured on 3D scaffolds for 1, 7, or 14 d to form vasculature with different maturation degrees. Monitoring graft-host interactions postimplantation demonstrated that the 14-d in vitro-cultured grafts, bearing more mature and complex vessel networks as indicated by elongated and branched vessel structures, had increased graft-host vessel anastomosis; host vessel penetration into the graft increased approximately eightfold, and graft perfusion increased sixfold. The presence of developed vessel networks prevented clot accumulation in the grafts. Conversely, short-term cultured constructs demonstrated poor vascularization and increased thrombus formation. Elevated expression levels of coagulation factors, von Willebrand factor (vWF), and tissue factor (TF), were demonstrated in constructs bearing less mature vasculature. To conclude, these findings demonstrate the importance of establishing mature and complex vessel networks in engineered tissues before implantation to promote anastomosis with the host and accelerate graft perfusion.


Assuntos
Neovascularização Fisiológica , Transplante de Órgãos/efeitos adversos , Trombose/patologia , Engenharia Tecidual , Anastomose Cirúrgica , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/patologia , Técnicas de Cocultura , Células Endoteliais/patologia , Fibroblastos , Humanos , Alicerces Teciduais , Transplantes/irrigação sanguínea
14.
Am J Transplant ; 19(1): 37-47, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856531

RESUMO

Autologous muscle flaps are commonly used to reconstruct defects that involve muscle impairment. To maintain viability and functionality of these flaps, they must be properly vascularized and innervated. Tissue-engineered muscles could potentially replace autologous muscle tissue, but still require establishment of sufficient innervation to ensure functionality. In this study, we explored the possibility of innervating engineered muscle grafts transplanted to an abdominal wall defect in mice, by transferring the native femoral nerve to the graft. Six weeks posttransplantation, nerve conduction studies and electromyography demonstrated increased innervation in engineered grafts neurotized with the femoral nerve, as compared to non-neurotized grafts. Histologic assessments revealed axonal penetration and formation of neuromuscular junctions within the grafts. The innervation process described here may advance the fabrication of a fully functional engineered muscle graft that will be of utility in clinical settings.


Assuntos
Músculo Esquelético/inervação , Músculo Esquelético/transplante , Doenças Musculares/cirurgia , Regeneração Nervosa , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Axônios/fisiologia , Linhagem Celular , Eletromiografia , Fibroblastos/citologia , Proteínas de Fluorescência Verde/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Nus , Poliésteres/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
15.
Nano Lett ; 18(12): 7698-7708, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30427693

RESUMO

Understanding the mechanosensitivity of tissues is a fundamentally important problem having far-reaching implications for tissue engineering. Here we study vascular networks formed by a coculture of fibroblasts and endothelial cells embedded in three-dimensional biomaterials experiencing external, physiologically relevant forces. We show that cyclic stretching of the biomaterial orients the newly formed network perpendicular to the stretching direction, independent of the geometric aspect ratio of the biomaterial's sample. A two-dimensional theory explains this observation in terms of the network's stored elastic energy if the cell-embedded biomaterial features a vanishing effective Poisson's ratio, which we directly verify. We further show that under a static stretch, vascular networks orient parallel to the stretching direction due to force-induced anisotropy of the biomaterial polymer network. Finally, static stretching followed by cyclic stretching reveals a competition between the two mechanosensitive mechanisms. These results demonstrate tissue-level mechanosensitivity and constitute an important step toward developing enhanced tissue repair capabilities using well-oriented vascular networks.

16.
Commun Biol ; 1: 161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30320229

RESUMO

Engineered tissues are a promising tool for addressing the growing need for tissues and organs in surgical reconstructions. Prevascularization of implanted tissues is expected to enhance survival prospects post transplantation and minimize deficiencies and/or hypoxia deeper in the tissue. Here, we fabricate a three-dimensional, prevascularized engineered muscle containing human myoblasts, genetically modified endothelial cells secreting angiopoietin 1 (ANGPT1) and genetically modified smooth muscle cells secreting vascular endothelial growth factor (VEGF). The genetically engineered human muscle shows enhanced host neovascularization and myogenesis following transplantation into a mouse host, compared to the non-secreting control. The vascular, genetically modified cells have been cleared for clinical trials and can be used to construct autologous vascularized tissues. Therefore, the described genetically engineered vascularized muscle has the potential to be fully translated to the clinical setting to overcome autologous tissue shortage and to accelerate host neovascularization and integration of engineered grafts following transplantation.

17.
Adv Sci (Weinh) ; 5(9): 1800506, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30250793

RESUMO

Endothelial cells form the interior layer of blood vessels and, as such, are constantly exposed to shear stress and mechanical strain. While the impact of shear stress on angiogenesis is widely studied, the role of mechanical strain is less understood. To this end, endothelial cells and fibroblasts are cocultured under oscillatory strain to create a vessel network. The two cell types show distinctly different sensitivities to the mechanical stimulation. The fibroblasts, sense the stress directly, and respond by increased alignment, proliferation, differentiation, and migration, facilitated by YAP translocation into the nucleus. In contrast, the endothelial cells form aligned vessels by tracking fibroblast alignment. YAP inhibition in constructs under mechanical strain results in vessel destruction whereas less damage is observed in the YAP-inhibited static control. Moreover, the mechanical stimulation enhances vessel development and stabilization. Additionally, vessel orientation is preserved upon implantation into a mouse dorsal window chamber and promotes the invading host vessels to orient in the same manner. This study sheds light on the mechanisms by which mechanical strain affects the development of blood vessels within engineered tissues. This can be further utilized to engineer a more organized and stable vasculature suitable for transplantation of engineered grafts.

18.
Artigo em Inglês | MEDLINE | ID: mdl-29404324

RESUMO

Today, in vitro vessel network systems frequently serve as models for investigating cellular and functional mechanisms underlying angiogenesis and vasculogenesis. Understanding the cues triggering the observed cell migration, organization, and differentiation, as well as the time frame of these processes, can improve the design of engineered microvasculature. Here, we present first evidence of the migration of endothelial cells into the depths of the scaffold, where they formed blood vessels surrounded by extracellular matrix and supporting cells. The supporting cells presented localization-dependent phenotypes, where cells adjacent to blood vessels displayed a more mature phenotype, with smooth muscle cell characteristics, whereas cells on the scaffold surface showed a pericyte-like phenotype. Yes-associated protein (YAP), a transcription activator of genes involved in cell proliferation and tissue growth, displayed spatially dependent expression, with cells on the surface showing more nuclear YAP than cells situated deeper within the scaffold.

19.
Biomaterials ; 122: 72-82, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28110114

RESUMO

The robust repair of large wounds and tissue defects relies on blood flow. This vascularization is the major challenge faced by tissue engineering on the path to forming thick, implantable tissue constructs. Without this vasculature, oxygen and nutrients cannot reach the cells located far from host blood vessels. To make viable constructs, tissue engineering takes advantage of the mechanical properties of synthetic materials, while combining them with ECM proteins to create a natural environment for the tissue-specific cells. Tropoelastin, the precursor of the elastin, is the ECM protein responsible for elasticity in diverse tissues, including robust blood vessels. Here, we seeded endothelial cells with supporting cells on PLLA/PLGA scaffolds treated with tropoelastin, and examined the morphology, expansion and maturity of the newly formed vessels. Our results demonstrate that the treated scaffolds elicit a more expanded, complex and developed vascularization in comparison to the untreated group. Implantation of tropoelastin-treated scaffolds into mouse abdominal muscle resulted in enhanced perfusion of the penetrating vasculature and improved integration. This study points to the great potential of these combined materials in promoting the vascularization of implanted engineered constructs, which can be further exploited in the fabrication of clinically relevant engineered tissues.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Células Endoteliais/citologia , Ácido Láctico/química , Neovascularização Fisiológica/fisiologia , Poliésteres/química , Ácido Poliglicólico/química , Alicerces Teciduais , Tropoelastina/química , Animais , Vasos Sanguíneos/citologia , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Células Endoteliais/fisiologia , Células Endoteliais/transplante , Matriz Extracelular/química , Feminino , Humanos , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Nus , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Próteses e Implantes , Engenharia Tecidual/instrumentação
20.
Proc Natl Acad Sci U S A ; 113(12): 3215-20, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951667

RESUMO

Understanding the forces controlling vascular network properties and morphology can enhance in vitro tissue vascularization and graft integration prospects. This work assessed the effect of uniaxial cell-induced and externally applied tensile forces on the morphology of vascular networks formed within fibroblast and endothelial cell-embedded 3D polymeric constructs. Force intensity correlated with network quality, as verified by inhibition of force and of angiogenesis-related regulators. Tensile forces during vessel formation resulted in parallel vessel orientation under static stretching and diagonal orientation under cyclic stretching, supported by angiogenic factors secreted in response to each stretch protocol. Implantation of scaffolds bearing network orientations matching those of host abdominal muscle tissue improved graft integration and the mechanical properties of the implantation site, a critical factor in repair of defects in this area. This study demonstrates the regulatory role of forces in angiogenesis and their capacities in vessel structure manipulation, which can be exploited to improve scaffolds for tissue repair.


Assuntos
Vasos Sanguíneos/fisiologia , Morfogênese , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Fisiológica , Resistência à Tração , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...