Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Sci Data ; 11(1): 416, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653806

RESUMO

Our sense of hearing is mediated by cochlear hair cells, of which there are two types organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains 5-15 thousand terminally differentiated hair cells, and their survival is essential for hearing as they do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. Machine learning can be used to automate the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, rat, guinea pig, pig, primate, and human cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 107,000 hair cells which have been identified and annotated as either inner or outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair-cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to give other hearing research groups the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.


Assuntos
Cóclea , Animais , Camundongos , Cobaias , Humanos , Ratos , Suínos , Células Ciliadas Auditivas , Microscopia de Fluorescência , Aprendizado de Máquina
2.
Artigo em Inglês | MEDLINE | ID: mdl-38529662

RESUMO

OBJECTIVE: The bone conduction implant (BCI) 602 is a new transcutaneous BCI with smaller dimensions. However, limited patient numbers restrict the statistical power and generalizability of the current studies. The present systematic review and meta-analysis summarize early audiological and medical outcomes of adult and pediatric patients implanted with the BCI 602 due to mixed or conductive hearing loss. DATA SOURCE: Following the Preferred Reporting items for Systematic Reviews and Meta-analyses guidelines, 108 studies were reviewed, and 6 (5.6%) were included in the meta-analysis. REVIEW METHOD: The data on study and patient characteristics, surgical outcomes, and audiological test results were extracted from each article. Meta-analysis employed the fixed-effect and random-effects models to analyze the mean differences (MDs) between pre- and postoperative performances. RESULTS: In total, 116 patients were evaluated, including 64 (55%) adult and 52 (45%) pediatric patients. No intraoperative adverse events were reported, while postoperative complications were reported in 2 (3.1%) adult and 2 (3.8%) pediatric patients. Studies consistently showed significant improvements in audiological outcomes, quality of life, and sound localization in the aided condition. In the meta-analysis, we observed a significant difference in the unaided compared to the aided condition in sound field thresholds (n = 112; MD, -27.05 dB; P < 0.01), signal-to-noise ratio (n = 96; MD, -6.35 dB; P < 0.01), and word recognition scores (n = 96; MD, 68.89%; P < 0.01). CONCLUSION: The implantation of the BCI 602 was associated with minimal surgical complications and excellent audiological outcomes for both the pediatric and the adult cohort. Therefore, our analysis indicates a high level of safety and reliability. Further research should focus on direct comparisons with other BCIs and long-term functional outcomes.

3.
Mol Ther Methods Clin Dev ; 32(1): 101197, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38371610
4.
Sci Adv ; 9(45): eadf7295, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948527

RESUMO

Vestibular schwannoma (VS) is an intracranial tumor arising from neoplastic Schwann cells and typically presenting with hearing loss. The traditional belief that hearing deficit is caused by physical expansion of the VS, compressing the auditory nerve, does not explain the common clinical finding that patients with small tumors can have profound hearing loss, suggesting that tumor-secreted factors could influence hearing ability in VS patients. We conducted profiling of patients' plasma for 66 immune-related factors in patients with sporadic VS (N > 170) and identified and validated candidate biomarkers associated with tumor size (S100B) and hearing (MCP-3). We further identified a nine-biomarker panel (TNR-R2, MIF, CD30, MCP-3, IL-2R, BLC, TWEAK, eotaxin, and S100B) with outstanding discriminatory ability for VS. These findings revealed possible therapeutic targets for VS, providing a unique diagnostic tool that may predict hearing change and tumor growth in VS patients, and may inform the timing of tumor resection to preserve hearing.


Assuntos
Surdez , Perda Auditiva , Neuroma Acústico , Humanos , Neuroma Acústico/diagnóstico , Neuroma Acústico/patologia , Neuroma Acústico/cirurgia , Perda Auditiva/etiologia , Audição , Biomarcadores
5.
Front Neurol ; 14: 1268359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885485

RESUMO

Introduction: Vestibular schwannoma (VS) is an intracranial tumor that arises on the vestibular branch of cranial nerve VIII and typically presents with sensorineural hearing loss (SNHL). The mechanisms of this SNHL are postulated to involve alterations in the inner ear's microenvironment mediated by the genetic cargo of VS-secreted extracellular vesicles (EVs). We aimed to identify the EV cargo associated with poor hearing and determine whether its delivery caused hearing loss and cochlear damage in a mouse model in vivo. Methods: VS tissue was collected from routinely resected tumors of patients with good (VS-GH) or poor (VS-PH) pre-surgical hearing measured via pure-tone average and word recognition scores. Next-generation sequencing was performed on RNA isolated from cultured primary human VS cells and EVs from VS-conditioned media, stratified by patients' hearing ability. microRNA expression levels were compared between VS-PH and VS-GH samples to identify differentially expressed candidates for packaging into a synthetic adeno-associated viral vector (Anc80L65). Viral vectors containing candidate microRNA were infused to the semicircular canals of mice to evaluate the effects on hearing, including after noise exposure. Results: Differentially expressed microRNAs included hsa-miR-431-5p (enriched in VS-PH) and hsa-miR-192-5p (enriched in VS-GH). Newborn mice receiving intracochlear injection of viral vectors over-expressing hsa-miR-431-GFP, hsa-miR-192-GFP, or GFP only (control) had similar hearing 6 weeks post-injection. However, after acoustic trauma, the miR-431 group displayed significantly worse hearing, and greater loss of synaptic ribbons per inner hair cell in the acoustically traumatized cochlear region than the control group. Conclusion: Our results suggest that miR-431 contributes to VS-associated hearing loss following cochlear stress. Further investigation is needed to determine whether miR-431 is a potential therapeutic target for SNHL.

6.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693382

RESUMO

Our sense of hearing is mediated by cochlear hair cells, localized within the sensory epithelium called the organ of Corti. There are two types of hair cells in the cochlea, which are organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains a few thousands of hair cells, and their survival is essential for our perception of sound because they are terminally differentiated and do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. However, the sheer number of cells along the cochlea makes manual quantification impractical. Machine learning can be used to overcome this challenge by automating the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, human, pig and guinea pig cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 90'000 hair cells, all of which have been manually identified and annotated as one of two cell types: inner hair cells and outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to supply other groups within the hearing research community with the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.

7.
Front Pharmacol ; 14: 1062379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969846

RESUMO

Hearing impairment is the most common sensory disorder in humans, and yet hardly any medications are licensed for the treatment of inner ear pathologies. Intricate pharmacokinetic examinations to better understand drug distribution within this complex organ could facilitate the development of novel therapeutics. For such translational research projects, animal models are indispensable, but differences in inner ear dimensions and other anatomical features complicate the transfer of experimental results to the clinic. The gap between rodents and humans may be bridged using larger animal models such as non-human primates. However, their use is challenging and impeded by administrative, regulatory, and financial hurdles. Other large animal models with more human-like inner ear dimensions are scarce. In this study, we analyzed the inner ears of piglets as a potential representative model for the human inner ear and established a surgical approach for intracochlear drug application and subsequent apical sampling. Further, controlled intracochlear delivery of fluorescein isothiocyanate-dextran (FITC-d) was carried out after the insertion of a novel, clinically applicable CE-marked cochlear catheter through the round window membrane. Two, six, and 24 hours after a single injection with this device, the intracochlear FITC-d distribution was determined in sequential perilymph samples. The fluorometrically assessed concentrations two hours after injection were compared to the FITC-d content in control groups, which either had been injected with a simple needle puncture through the round window membrane or the cochlear catheter in combination with a stapes vent hole. Our findings demonstrate not only significantly increased apical FITC-d concentrations when using the cochlear catheter but also higher total concentrations in all perilymph samples. Additionally, the concentration decreased after six and 24 hours and showed a more homogenous distribution compared to shorter observation times.

8.
Otol Neurotol ; 44(4): e204-e210, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791369

RESUMO

OBJECTIVES: Numerous preclinical experiments over the past years have shown the potential of novel therapeutic approaches for sensorineural hearing loss (SNHL) that are now awaiting clinical translation. In this pilot study, we aimed to evaluate the patient acceptance of these future innovative therapies in individuals with SNHL. STUDY DESIGN: Cross-sectional exploratory pilot study. SETTING: Tertiary care academic hospital. PATIENTS: In total, 72 individuals (43 female and 29 male, 59 affected subjects and 13 parents) with different types of SNHL were surveyed between May 2020 and November 2020. INTERVENTION: The interest/willingness to consider new therapeutic options (viral vectors, stem cells, CRISPR/Cas) for themselves or their children was assessed with the help of a questionnaire, and the answers were matched with a quality-of-life score and sociodemographic as well as clinical characteristics. MAIN OUTCOME MEASURE: Acceptance of new therapeutic strategies for SNHL in a representative population. RESULTS: Even with the currently associated treatment uncertainties, 48 patients (66.7%) suffering from SNHL stated that new therapies could be a potential future option for them. Half of these (24 individuals; 33.3%) expressed high acceptance toward the novel strategies. Subjects with a positive attitude toward new therapies in general and viral vectors specifically were significantly older. CONCLUSION: With two-thirds of patients affected by SNHL expressing acceptance toward novel therapies, this pilot study highlights the importance of investigating such attitudes and motivates further translational research to offer additional treatment strategies to this patient population.


Assuntos
Perda Auditiva Neurossensorial , Criança , Humanos , Masculino , Feminino , Projetos Piloto , Estudos Transversais , Perda Auditiva Neurossensorial/complicações
9.
bioRxiv ; 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36747696

RESUMO

Vestibular schwannoma (VS) is intracranial tumor arising from neoplastic Schwann cells, causing hearing loss in about 95% of patients. The traditional belief that hearing deficit is caused by physical expansion of the VS, compressing the auditory nerve, does not explain the common clinical finding that patients with small tumors can have profound hearing loss, suggesting that tumor-secreted factors could influence hearing ability in VS patients. Here, we conducted profiling of patients' plasma for 67 immune-related factors on a large cohort of VS patients (N>120) and identified candidate biomarkers associated with tumor growth (IL-16 and S100B) and hearing (MDC). We identified the 7-biomarker panel composed of MCP-3, BLC, S100B, FGF-2, MMP-14, eotaxin, and TWEAK that showed outstanding discriminatory ability for VS. These findings revealed possible therapeutic targets for VS-induced hearing loss and provided a unique diagnostic tool that may predict hearing change and tumor growth in VS patients and may help inform the ideal timing of tumor resection to preserve hearing.

10.
Hear Res ; 426: 108644, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343533

RESUMO

OBJECTIVES: Various animal models have been established and applied in hearing research. In the exploration of novel cochlear implant developments, mainly rodents have been used. Despite their important contribution to the understanding of auditory function, translation of experimental observations from rodents to humans is limited due to the size differences and genetic variability. Large animal models with better representation of the human cochlea are sparse. For this reason, we evaluated domestic piglets and Aachen minipigs for the suitability as a cochlear implantation animal model with commercially available cochlear implants. METHODS: Four domestic piglets (two male and two female) and six Aachen minipigs were implanted with either MED-EL Flex24 or Flex20 cochlear implants respectively, after a step-by-step surgical approach was trained with pig cadavers. Electrophysiological measurements were performed before, during and after implantation for as long as 56 days after surgery. Auditory brainstem responses, electrocochleography as well as electrically and acoustically evoked compound action potentials were recorded. Selected cochleae were further analyzed histologically or with micro-CT imaging. RESULTS: A surgical approach was established using a retroauricular single incision. Baseline auditory thresholds were 27 ± 3 dB sound pressure level (SPL; auditory brainstem click responses, mean ± standard error of the mean) and ranged between 30 and 80 dB SPL in frequency-specific responses (0.5 - 32 kHz). Follow-up measurements revealed deafness within the first two weeks after surgery, but some animals partially recovered to a hearing threshold of 80 dB SPL in certain frequencies as well as in click responses. Electrically evoked compound action potential thresholds increased within the first week after surgery, which led to lower stimulation responses or increase of necessary charge input. Immune reactions and consecutive scalar fibrosis following implantation were confirmed with histological analysis of implanted cochleae and may result in increased impedances. A three-dimensional minipig micro-CT segmentation revealed cochlear volumetric data similar to human inner ear dimensions. CONCLUSIONS: This study underlines the feasibility of cochlear implantation with clinically used cochlear implants in a large animal model with representative inner ear dimensions comparable to humans. To bridge the gap between small animal models and humans in translational research and to account for the structural and size differences, we recommend the minipig as a valuable animal model for hearing research. First insights into the induced trauma in minipigs after cochlear implant surgery and a partial hearing recovery present important data of the cochlear health changes in large animal cochleae.


Assuntos
Implante Coclear , Implantes Cocleares , Animais , Masculino , Feminino , Humanos , Suínos , Implante Coclear/métodos , Porco Miniatura , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Cóclea/patologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Limiar Auditivo/fisiologia , Audição/fisiologia
12.
Transl Res ; 248: 87-110, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35597541

RESUMO

Adeno-associated viruses (AAVs) represent some of the most commonly employed vectors for targeted gene delivery and their extensive study has resulted in the approval of multiple gene therapies to treat human diseases. The intranasal route of vector application in gene therapy offers several advantages over traditional ways of administration. In addition to targeting local tissue like the olfactory epithelium, it provides minimally invasive access to various organ systems, including the central nervous system and the respiratory tract. Through a systematic literature review, a total of 53 articles that investigated the intranasal application of AAVs were identified, included, and summarized in this manuscript. Within these studies, AAV-based gene therapy was mainly investigated for its application in various infectious, pulmonary, or neurologic and/or psychiatric diseases. This review gives a comprehensive overview of the current technological state of the art regarding the intranasal application of AAVs for gene transfer and discusses remaining hurdles, which still have to be resolved before this approach can effectively be implemented in the routine clinical setting.


Assuntos
Dependovirus , Vetores Genéticos , Administração Intranasal , Técnicas de Transferência de Genes , Terapia Genética , Humanos
13.
Diagnostics (Basel) ; 12(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328238

RESUMO

Tuberculosis represents a global health challenge and is one of the leading infectious killers, with over a million people succumbing to it every year. While the disease is primarily prevalent in developing countries, where 95% of cases and deaths occur, doctors around the globe need to be able to recognize its diverse clinical manifestations in order to initiate appropriate treatment early. The granulomatous infection caused by Mycobacterium tuberculosis typically affects the lungs, but isolated abscesses in the head and neck region can be a less common presentation of the disease, potentially resulting in dysphagia, odynophagia, voice changes, neck swelling, bone erosion, and even life-threatening respiratory distress requiring tracheostomy. Here, characteristic imaging findings and potential surgical options are discussed.

14.
Nat Commun ; 13(1): 1359, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292639

RESUMO

Inner ear gene therapy using adeno-associated viral vectors (AAV) promises to alleviate hearing and balance disorders. We previously established the benefits of Anc80L65 in targeting inner and outer hair cells in newborn mice. To accelerate translation to humans, we now report the feasibility and efficiency of the surgical approach and vector delivery in a nonhuman primate model. Five rhesus macaques were injected with AAV1 or Anc80L65 expressing eGFP using a transmastoid posterior tympanotomy approach to access the round window membrane after making a small fenestra in the oval window. The procedure was well tolerated. All but one animal showed cochlear eGFP expression 7-14 days following injection. Anc80L65 in 2 animals transduced up to 90% of apical inner hair cells; AAV1 was markedly less efficient at equal dose. Transduction for both vectors declined from apex to base. These data motivate future translational studies to evaluate gene therapy for human hearing disorders.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Cóclea/fisiologia , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Macaca mulatta/genética , Camundongos
15.
Eur Arch Otorhinolaryngol ; 279(3): 1601-1607, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34557959

RESUMO

PURPOSE: Although haemorrhage is a common and in some cases life-threatening complication after tonsillectomy, surprisingly little is known about the temporal fluctuations of the onset of bleeding. The purpose of this study was to assess circadian and seasonal rhythms of post-tonsillectomy haemorrhage (PTH) and potential ramifications to educate patients and health care staff. METHODS: This retrospective study carried out at a tertiary referral hospital included paediatric and adult patients requiring emergency surgery due to severe PTH between 1993 and 2019. Medical records were reviewed and patient demographics, details regarding the initial procedure, postoperative day of haemorrhage, and start time of emergency surgery were extracted. Descriptive statistics, Kruskal-Wallis test, Mann-Whitney U test, and Chi-square goodness of fit tests were used to detect potential differences. RESULTS: A total of 300 patients with severe PTH and subsequent emergency surgery were identified. The median postoperative duration until PTH was 6 (range: < 1-19) days. 64.7% (n = 194) of all emergency surgeries had to be performed during evening and night hours (6 pm-6 am) (p < 0.0001). Compared to diurnal incidents, the risk of a nocturnal PTH event increased, the longer ago the initial surgery was (p < 0.0001). No seasonal variations were identified. Age, sex, and details of the initial procedure had no significant influence on the start time according to the surgical protocol. CONCLUSION: The discovered temporal fluctuations of PTH are of relevance for patient awareness and preoperative education. Due to possible life-threatening complications, management of severe PTH requires specific resources and trained medical staff on call.


Assuntos
Tonsilectomia , Adulto , Criança , Humanos , Hemorragia Pós-Operatória/diagnóstico , Hemorragia Pós-Operatória/epidemiologia , Hemorragia Pós-Operatória/etiologia , Período Pós-Operatório , Estudos Retrospectivos , Tonsilectomia/métodos
16.
Hear Res ; 413: 108092, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268240

RESUMO

Owing to the advances in transgenic animal technology and the advent of the next-generation sequencing era, over 120 genes causing hereditary hearing loss have been identified by now. In parallel, the field of human gene therapy continues to make exciting and rapid progress, culminating in the recent approval of several ex vivo and in vivo applications. Despite these encouraging developments and the growing interest in causative treatments for hearing disorders, gene therapeutic interventions in the inner ear remain in their infancy and await clinical translation. This review focuses on the adeno-associated virus (AAV), which nowadays represents one of the safest and most promising vectors in gene therapy. We first provide an overview of AAV biology and outline the principles of therapeutic gene transfer with recombinant AAV vectors, before pointing out major challenges and solutions for clinical translation including vector manufacturing and species translatability. Finally, we highlight seminal technologies for engineering and selection of next-generation "designer" AAV capsids, and illustrate their power and potential with recent examples of their application for inner ear gene transfer in animals.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Capsídeo , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Transtornos da Audição
17.
Sci Transl Med ; 13(602)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261799

RESUMO

Hearing loss is one of the most common symptoms of neurofibromatosis type 2 (NF2) caused by vestibular schwannomas (VSs). Fibrosis in the VS tumor microenvironment (TME) is associated with hearing loss in patients with NF2. We hypothesized that reducing the fibrosis using losartan, an FDA-approved antihypertensive drug that blocks fibrotic and inflammatory signaling, could improve hearing. Using NF2 mouse models, we found that losartan treatment normalized the TME by (i) reducing neuroinflammatory IL-6/STAT3 signaling and preventing hearing loss, (ii) normalizing tumor vasculature and alleviating neuro-edema, and (iii) increasing oxygen delivery and enhancing efficacy of radiation therapy. In preparation to translate these exciting findings into the clinic, we used patient samples and data and demonstrated that IL-6/STAT3 signaling inversely associated with hearing function, that elevated production of tumor-derived IL-6 was associated with reduced viability of cochlear sensory cells and neurons in ex vivo organotypic cochlear cultures, and that patients receiving angiotensin receptor blockers have no progression in VS-induced hearing loss compared with patients on other or no antihypertensives based on a retrospective analysis of patients with VS and hypertension. Our study provides the rationale and critical data for a prospective clinical trial of losartan in patients with VS.


Assuntos
Perda Auditiva , Neurilemoma , Neurofibromatose 2 , Animais , Humanos , Losartan/farmacologia , Losartan/uso terapêutico , Camundongos , Estudos Prospectivos , Estudos Retrospectivos , Roedores , Resultado do Tratamento , Microambiente Tumoral
18.
Front Mol Neurosci ; 14: 670013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108864

RESUMO

Cochlin is the most abundant protein in the inner ear. To study its function in response to noise trauma, we exposed adolescent wild-type (Coch +/+ ) and cochlin knock-out (Coch -/-) mice to noise (8-16 kHz, 103 dB SPL, 2 h) that causes a permanent threshold shift and hair cell loss. Two weeks after noise exposure, Coch-/- mice had substantially less elevation in noise-induced auditory thresholds and hair cell loss than Coch + / + mice, consistent with cochlin deficiency providing protection from noise trauma. Comparison of pre-noise exposure thresholds of auditory brain stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) in Coch-/- mice and Coch + / + littermates revealed a small and significant elevation in thresholds of Coch-/- mice, overall consistent with a small conductive hearing loss in Coch-/- mice. We show quantitatively that the pro-inflammatory component of cochlin, LCCL, is upregulated after noise exposure in perilymph of wild-type mice compared to unexposed mice, as is the enzyme catalyzing LCCL release, aggrecanase1, encoded by Adamts4. We further show that upregulation of pro-inflammatory cytokines in perilymph and cochlear soft-tissue after noise exposure is lower in cochlin knock-out than wild-type mice. Taken together, our data demonstrate for the first time that cochlin deficiency results in conductive hearing loss that protects against physiologic and molecular effects of noise trauma.

20.
Bone ; 145: 115837, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33385614

RESUMO

The bone encasing the inner ear, known as the otic capsule, is unique because it remodels little postnatally compared to other bones in the body. Previous studies established that osteoprotegerin (OPG) in the inner ear inhibits otic capsule remodeling. OPG acts as a decoy receptor of receptor activator of nuclear factor κB ligand (RANKL) to disrupt the interaction between RANKL and RANK, the primary regulators of bone metabolism. Here we studied the expression and function of RANK and RANKL in the murine cochlea. Using a combination of in situ hybridization, real-time quantitative RT-PCR, and western blot, we demonstrate that Rankl and Rank genes and their protein products are expressed in the intracochlear soft tissues and the otic capsule in a developmentally regulated manner. Using a culture of neonatal murine cochlear neurons, we show that the interaction between RANK and RANKL inhibits neurite outgrowth in these neurons, and is associated with upregulation of NOGO-A expression. Taken together, our results suggest that, in addition to regulating otic capsule bone remodeling, RANK and RANKL expressed by intracochlear soft tissues may also regulate spiral ganglion neuron function by affecting neurite outgrowth.


Assuntos
Orelha Interna , Ligante RANK , Animais , Remodelação Óssea , Camundongos , Proteínas Nogo , Osteoprotegerina/genética , Receptor Ativador de Fator Nuclear kappa-B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...