Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(9): eadl3188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416817

RESUMO

Cell memory refers to the capacity of cells to maintain their gene expression program once the initiating environmental signal has ceased. This exceptional feature is key during the formation of mammalian organisms, and it is believed to be in part mediated by epigenetic factors that can endorse cells with the landmarks required to maintain transcriptional programs upon cell duplication. Here, we review current literature analyzing the molecular basis of epigenetic memory in mammals, with a focus on the mechanisms by which transcriptionally repressive chromatin modifications such as methylation of DNA and histone H3 are propagated through mitotic cell divisions. The emerging picture suggests that cellular memory is supported by an epigenetic cycle in which reversible activities carried out by epigenetic regulators in coordination with cell cycle transition create a multiphasic system that can accommodate both maintenance of cell identity and cell differentiation in proliferating stem cell populations.


Assuntos
Metilação de DNA , Epigênese Genética , Animais , Histonas/genética , Mamíferos/genética , Ciclo Celular , Células-Tronco , Proteínas do Grupo Polycomb , Histona Metiltransferases , Diferenciação Celular , Cromatina
2.
Cell Death Dis ; 14(6): 357, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301844

RESUMO

Pediatric Acute Myeloid Leukemia (AML) is a rare and heterogeneous disease characterized by a high prevalence of gene fusions as driver mutations. Despite the improvement of survival in the last years, about 50% of patients still experience a relapse. It is not possible to improve prognosis only with further intensification of chemotherapy, as come with a severe cost to the health of patients, often resulting in treatment-related death or long-term sequels. To design more effective and less toxic therapies we need a better understanding of pediatric AML biology. The NUP98-KDM5A chimeric protein is exclusively found in a particular subgroup of young pediatric AML patients with complex karyotypes and poor prognosis. In this study, we investigated the impact of NUP98-KDM5A expression on cellular processes in human Pluripotent Stem Cell models and a patient-derived cell line. We found that NUP98-KDM5A generates genomic instability through two complementary mechanisms that involve accumulation of DNA damage and direct interference of RAE1 activity during mitosis. Overall, our data support that NUP98-KDM5A promotes genomic instability and likely contributes to malignant transformation.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Humanos , Criança , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Oncogênicas/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Instabilidade Genômica , Proteína 2 de Ligação ao Retinoblastoma/metabolismo
3.
Nat Commun ; 14(1): 180, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635295

RESUMO

The potential of pluripotent cells to respond to developmental cues and trigger cell differentiation is enhanced during the G1 phase of the cell cycle, but the molecular mechanisms involved are poorly understood. Variations in polycomb activity during interphase progression have been hypothesized to regulate the cell-cycle-phase-dependent transcriptional activation of differentiation genes during lineage transition in pluripotent cells. Here, we show that recruitment of Polycomb Repressive Complex 1 (PRC1) and associated molecular functions, ubiquitination of H2AK119 and three-dimensional chromatin interactions, are enhanced during S and G2 phases compared to the G1 phase. In agreement with the accumulation of PRC1 at target promoters upon G1 phase exit, cells in S and G2 phases show firmer transcriptional repression of developmental regulator genes that is drastically perturbed upon genetic ablation of the PRC1 catalytic subunit RING1B. Importantly, depletion of RING1B during retinoic acid stimulation interferes with the preference of mouse embryonic stem cells (mESCs) to induce the transcriptional activation of differentiation genes in G1 phase. We propose that incremental enrolment of polycomb repressive activity during interphase progression reduces the tendency of cells to respond to developmental cues during S and G2 phases, facilitating activation of cell differentiation in the G1 phase of the pluripotent cell cycle.


Assuntos
Histonas , Células-Tronco Pluripotentes , Complexo Repressor Polycomb 1 , Animais , Camundongos , Diferenciação Celular/genética , Cromatina/genética , Histonas/metabolismo , Interfase , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Células-Tronco Pluripotentes/citologia
4.
Oncogene ; 41(28): 3611-3624, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35680984

RESUMO

Reversible transition between the epithelial and mesenchymal states are key aspects of carcinoma cell dissemination and the metastatic disease, and thus, characterizing the molecular basis of the epithelial to mesenchymal transition (EMT) is crucial to find druggable targets and more effective therapeutic approaches in cancer. Emerging studies suggest that epigenetic regulators might endorse cancer cells with the cell plasticity required to conduct dynamic changes in cell state during EMT. However, epigenetic mechanisms involved remain mostly unknown. Polycomb Repressive Complexes (PRCs) proteins are well-established epigenetic regulators of development and stem cell differentiation, but their role in different cancer systems is inconsistent and sometimes paradoxical. In this study, we have analysed the role of the PRC2 protein EZH2 in lung carcinoma cells. We found that besides its described role in CDKN2A-dependent cell proliferation, EZH2 upholds the epithelial state of cancer cells by repressing the transcription of hundreds of mesenchymal genes. Chemical inhibition or genetic removal of EZH2 promotes the residence of cancer cells in the mesenchymal state during reversible epithelial-mesenchymal transition. In fitting, analysis of human patient samples and tumour xenograft models indicate that EZH2 is required to efficiently repress mesenchymal genes and facilitate tumour colonization in vivo. Overall, this study discloses a novel role of PRC2 as a master regulator of EMT in carcinoma cells. This finding has important implications for the design of therapies based on EZH2 inhibitors in human cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Diferenciação Celular , Linhagem Celular Tumoral , Plasticidade Celular/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias Pulmonares/genética , Proteínas do Grupo Polycomb
5.
Nat Genet ; 53(7): 1036-1049, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34183853

RESUMO

CpG islands (CGIs) represent a widespread feature of vertebrate genomes, being associated with ~70% of all gene promoters. CGIs control transcription initiation by conferring nearby promoters with unique chromatin properties. In addition, there are thousands of distal or orphan CGIs (oCGIs) whose functional relevance is barely known. Here we show that oCGIs are an essential component of poised enhancers that augment their long-range regulatory activity and control the responsiveness of their target genes. Using a knock-in strategy in mouse embryonic stem cells, we introduced poised enhancers with or without oCGIs within topologically associating domains harboring genes with different types of promoters. Analysis of the resulting cell lines revealed that oCGIs act as tethering elements that promote the physical and functional communication between poised enhancers and distally located genes, particularly those with large CGI clusters in their promoters. Therefore, by acting as genetic determinants of gene-enhancer compatibility, CGIs can contribute to gene expression control under both physiological and potentially pathological conditions.


Assuntos
Ilhas de CpG , Metilação de DNA , Elementos Facilitadores Genéticos , Epigênese Genética , Regulação da Expressão Gênica , Animais , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Técnicas de Introdução de Genes , Camundongos , Regiões Promotoras Genéticas
6.
Life Sci Alliance ; 3(5)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32284355

RESUMO

Mammals optimize their physiology to the light-dark cycle by synchronization of the master circadian clock in the brain with peripheral clocks in the rest of the tissues of the body. Circadian oscillations rely on a negative feedback loop exerted by the molecular clock that is composed by transcriptional activators Bmal1 and Clock, and their negative regulators Period and Cryptochrome. Components of the molecular clock are expressed during early development, but onset of robust circadian oscillations is only detected later during embryogenesis. Here, we have used naïve pluripotent mouse embryonic stem cells (mESCs) to study the role of Bmal1 during early development. We found that, compared to wild-type cells, Bmal1-/- mESCs express higher levels of Nanog protein and altered expression of pluripotency-associated signalling pathways. Importantly, Bmal1-/- mESCs display deficient multi-lineage cell differentiation capacity during the formation of teratomas and gastrula-like organoids. Overall, we reveal that Bmal1 regulates pluripotent cell differentiation and propose that the molecular clock is an hitherto unrecognized regulator of mammalian development.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição ARNTL/fisiologia , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Retroalimentação Fisiológica/fisiologia , Expressão Gênica/genética , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteínas Circadianas Period/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transcrição Gênica
7.
Sci Adv ; 6(10): eaay4768, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32181346

RESUMO

When self-renewing pluripotent cells receive a differentiation signal, ongoing cell duplication needs to be coordinated with entry into a differentiation program. Accordingly, transcriptional activation of lineage specifier genes and cell differentiation is confined to the G1 phase of the cell cycle by unknown mechanisms. We found that Polycomb repressive complex 2 (PRC2) subunits are differentially recruited to lineage specifier gene promoters across cell cycle in mouse embryonic stem cells (mESCs). Jarid2 and the catalytic subunit Ezh2 are markedly accumulated at target promoters during S and G2 phases, while the transcriptionally activating subunits EPOP and EloB are enriched during G1 phase. Fluctuations in the recruitment of PRC2 subunits promote changes in RNA synthesis and RNA polymerase II binding that are compromised in Jarid2 -/- mESCs. Overall, we show that differential recruitment of PRC2 subunits across cell cycle enables the establishment of a chromatin state that facilitates the induction of cell differentiation in G1 phase.


Assuntos
Ciclo Celular/genética , Cromatina/química , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 2/genética , Animais , Diferenciação Celular , Linhagem Celular Transformada , Cromatina/metabolismo , Elonguina/genética , Elonguina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Complexo Repressor Polycomb 2/deficiência , Regiões Promotoras Genéticas , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais , Transcrição Gênica
8.
Sci Rep ; 9(1): 8140, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31148571

RESUMO

Recent technical advances highlight that to understand mammalian development and human disease we need to consider transcriptional and epigenetic cell-to-cell differences within cell populations. This is particularly important in key areas of biomedicine like stem cell differentiation and intratumor heterogeneity. The recently developed nucleosome occupancy and methylome (NOMe) assay facilitates the simultaneous study of DNA methylation and nucleosome positioning on the same DNA strand. NOMe-treated DNA can be sequenced by sanger (NOMe-PCR) or high throughput approaches (NOMe-seq). NOMe-PCR provides information for a single locus at the single molecule while NOMe-seq delivers genome-wide data that is usually interrogated to obtain population-averaged measures. Here, we have developed a bioinformatic tool that allow us to easily obtain locus-specific information at the single molecule using genome-wide NOMe-seq datasets obtained from bulk populations. We have used NOMePlot to study mouse embryonic stem cells and found that polycomb-repressed bivalent gene promoters coexist in two different epigenetic states, as defined by the nucleosome binding pattern detected around their transcriptional start site.


Assuntos
Biologia Computacional/métodos , Metilação de DNA , Nucleossomos/genética , Reconhecimento Automatizado de Padrão , Animais , Ilhas de CpG , Células-Tronco Embrionárias/citologia , Epigênese Genética , Genoma Humano , Humanos , Internet , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Software , Sítio de Iniciação de Transcrição
9.
Clin Cancer Res ; 24(22): 5697-5709, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30012564

RESUMO

Purpose: On the basis of the identified stress-independent cellular functions of activating transcription factor 4 (ATF4), we reported enhanced ATF4 levels in MCF10A cells treated with TGFß1. ATF4 is overexpressed in patients with triple-negative breast cancer (TNBC), but its impact on patient survival and the underlying mechanisms remain unknown. We aimed to determine ATF4 effects on patients with breast cancer survival and TNBC aggressiveness, and the relationships between TGFß and ATF4. Defining the signaling pathways may help us identify a cell signaling-tailored gene signature.Experimental Design: Patient survival data were determined by Kaplan-Meier analysis. Relationship between TGFß and ATF4, their effects on aggressiveness (tumor proliferation, metastasis, and stemness), and the underlying pathways were analyzed in three TNBC cell lines and in vivo using patient-derived xenografts (PDX).Results: ATF4 overexpression correlated with TNBC patient survival decrease and a SMAD-dependent crosstalk between ATF4 and TGFß was identified. ATF4 expression inhibition reduced migration, invasiveness, mammosphere-forming efficiency, proliferation, epithelial-mesenchymal transition, and antiapoptotic and stemness marker levels. In PDX models, ATF4 silencing decreased metastases, tumor growth, and relapse after chemotherapy. ATF4 was shown to be active downstream of SMAD2/3/4 and mTORC2, regulating TGFß/SMAD and mTOR/RAC1-RHOA pathways independently of stress. We defined an eight-gene signature with prognostic potential, altered in 45% of 2,509 patients with breast cancer.Conclusions: ATF4 may represent a valuable prognostic biomarker and therapeutic target in patients with TNBC, and we identified a cell signaling pathway-based gene signature that may contribute to the development of combinatorial targeted therapies for breast cancer. Clin Cancer Res; 24(22); 5697-709. ©2018 AACR.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Fator 4 Ativador da Transcrição/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Biologia Computacional/métodos , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Modelos Biológicos , Prognóstico , RNA Interferente Pequeno/genética , Transcriptoma , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade
10.
Cell Rep ; 12(4): 573-86, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26190104

RESUMO

Jarid2 is part of the Polycomb Repressor complex 2 (PRC2) responsible for genome-wide H3K27me3 deposition. Unlike other PRC2-deficient embryonic stem cells (ESCs), however, Jarid2-deficient ESCs show a severe differentiation block, altered colony morphology, and distinctive patterns of deregulated gene expression. Here, we show that Jarid2(-/-) ESCs express constitutively high levels of Nanog but reduced PCP signaling components Wnt9a, Prickle1, and Fzd2 and lowered ß-catenin activity. Depletion of Wnt9a/Prickle1/Fzd2 from wild-type ESCs or overexpression of Nanog largely phenocopies these cellular defects. Co-culture of Jarid2(-/-) with wild-type ESCs restores variable Nanog expression and ß-catenin activity and can partially rescue the differentiation block of mutant cells. In addition, we show that ESCs lacking Jarid2 or Wnt9a/Prickle1/Fzd2 or overexpressing Nanog induce multiple ICM formation when injected into normal E3.5 blastocysts. These data describe a previously unrecognized role for Jarid2 in regulating a core pluripotency and Wnt/PCP signaling circuit that is important for ESC differentiation and for pre-implantation development.


Assuntos
Blastocisto/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Via de Sinalização Wnt , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Células-Tronco Embrionárias/citologia , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Camundongos , Proteína Homeobox Nanog , Complexo Repressor Polycomb 2/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
11.
Mol Cell ; 49(6): 1023-33, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23453809

RESUMO

Genomic imprinting directs the allele-specific marking and expression of loci according to their parental origin. Differential DNA methylation at imprinted control regions (ICRs) is established in gametes and, although largely preserved through development, can be experimentally reset by fusing somatic cells with embryonic germ cell (EGC) lines. Here, we show that the Ten-Eleven Translocation proteins Tet1 and Tet2 participate in the efficient erasure of imprints in this model system. The fusion of B cells with EGCs initiates pluripotent reprogramming, in which rapid re-expression of Oct4 is accompanied by an accumulation of 5-hydroxymethylcytosine (5hmC) at several ICRs. Tet2 was required for the efficient reprogramming capacity of EGCs, whereas Tet1 was necessary to induce 5-methylcytosine oxidation specifically at ICRs. These data show that the Tet1 and Tet2 proteins have discrete roles in cell-fusion-mediated pluripotent reprogramming and imprint erasure in somatic cells.


Assuntos
Fusão Celular , Proteínas de Ligação a DNA/fisiologia , Impressão Genômica , Proteínas Proto-Oncogênicas/fisiologia , 5-Metilcitosina/análogos & derivados , Animais , Linfócitos B/citologia , Sequência de Bases , Linhagem Celular , Citosina/análogos & derivados , Citosina/metabolismo , Metilação de DNA , Dioxigenases , Células-Tronco Embrionárias/citologia , Expressão Gênica , Células Germinativas/citologia , Proteínas de Fluorescência Verde/biossíntese , Humanos , Fator de Crescimento Insulin-Like II/genética , Camundongos , Dados de Sequência Molecular , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Proteínas/metabolismo , RNA Longo não Codificante/genética , Análise de Sequência de DNA
12.
Cell ; 152(4): 873-83, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23415233

RESUMO

Embryonic stem cells (ESCs) can instruct the conversion of differentiated cells toward pluripotency following cell-to-cell fusion by a mechanism that is rapid but poorly understood. Here, we used centrifugal elutriation to enrich for mouse ESCs at sequential stages of the cell cycle and showed that ESCs in S/G2 phases have an enhanced capacity to dominantly reprogram lymphocytes and fibroblasts in heterokaryon and hybrid assays. Reprogramming success was associated with an ability to induce precocious nucleotide incorporation within the somatic partner nuclei in heterokaryons. BrdU pulse-labeling experiments revealed that virtually all successfully reprogrammed somatic nuclei, identified on the basis of Oct4 re-expression, had undergone DNA synthesis within 24 hr of fusion with ESCs. This was essential for successful reprogramming because drugs that inhibited DNA polymerase activity effectively blocked pluripotent conversion. These data indicate that nucleotide incorporation is an early and critical event in the epigenetic reprogramming of somatic cells in experimental ESC-heterokaryons.


Assuntos
Replicação do DNA , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Linfócitos B/citologia , Fusão Celular , Núcleo Celular/metabolismo , Reprogramação Celular , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Humanos , Camundongos , Nucleotídeos/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo
14.
Trends Cell Biol ; 21(2): 74-80, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21074441

RESUMO

Methylation of histone tails is believed to be important for the establishment and inheritance of gene expression programs during development. Jarid2/Jumonji is the founding member of a family of chromatin modifiers with histone demethylase activity. Although Jarid2 contains amino acid substitutions that are thought to abolish its catalytic activity, it is essential for the development of multiple organs in mice. Recent studies have shown that Jarid2 is a component of the polycomb repressive complex 2 and is required for embryonic stem (ES) cell differentiation. Here, we discuss current literature on the function of Jarid2 and hypothesize that defects resulting from Jarid2 deficiency arise from a failure to correctly prime genes in ES cells that are required for later stages in development.


Assuntos
Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Histona Desmetilases/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Animais , Células-Tronco Embrionárias/citologia , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Alinhamento de Sequência
15.
Cell Stem Cell ; 6(6): 547-56, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20569692

RESUMO

Embryonic stem cells (ESCs) are pluripotent, self-renewing, and have the ability to reprogram differentiated cell types to pluripotency upon cellular fusion. Polycomb-group (PcG) proteins are important for restraining the inappropriate expression of lineage-specifying factors in ESCs. To investigate whether PcG proteins are required for establishing, rather than maintaining, the pluripotent state, we compared the ability of wild-type, PRC1-, and PRC2-depleted ESCs to reprogram human lymphocytes. We show that ESCs lacking either PRC1 or PRC2 are unable to successfully reprogram B cells toward pluripotency. This defect is a direct consequence of the lack of PcG activity because it could be efficiently rescued by reconstituting PRC2 activity in PRC2-deficient ESCs. Surprisingly, the failure of PRC2-deficient ESCs to reprogram somatic cells is functionally dominant, demonstrating a critical requirement for PcG proteins in the chromatin-remodeling events required for the direct conversion of differentiated cells toward pluripotency.


Assuntos
Linfócitos B/metabolismo , Células-Tronco Embrionárias/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Linfócitos B/patologia , Fusão Celular , Linhagem Celular Transformada , Reprogramação Celular/genética , Células-Tronco Embrionárias/patologia , Técnicas de Inativação de Genes , Histona-Lisina N-Metiltransferase/genética , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos , Células-Tronco Neoplásicas/patologia , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Proteínas Repressoras/genética , Telomerase/biossíntese , Telomerase/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
16.
Nat Cell Biol ; 12(6): 618-24, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20473294

RESUMO

Polycomb Repressor Complexes (PRCs) are important regulators of embryogenesis. In embryonic stem (ES) cells many genes that regulate subsequent stages in development are enriched at their promoters for PRC1, PRC2 and Ser 5-phosphorylated RNA Polymerase II (RNAP), and contain domains of 'bivalent' chromatin (enriched for H3K4me3; histone H3 di- or trimethylated at Lys 4 and H3K27me3; histone H3 trimethylated at Lys 27). Loss of individual PRC components in ES cells can lead to gene de-repression and to unscheduled differentiation. Here we show that Jarid2 is a novel subunit of PRC2 that is required for the co-recruitment of PRC1 and RNAP to genes that regulate development in ES cells. Jarid2-deficient ES cells showed reduced H3K4me2/me3 and H3K27me3 marking and PRC1/PRC2 recruitment, and did not efficiently establish Ser 5-phosporylated RNAP at target genes. ES cells lacking Jarid2, in contrast to previously characterized PRC1 and PRC2 mutants, did not inappropriately express PRC2 target genes. Instead, they show a severely compromised capacity for successful differentiation towards neural or mesodermal fates and failed to correctly initiate lineage-specific gene expression in vitro. Collectively, these data indicate that transcriptional priming of bivalent genes in pluripotent ES cells is Jarid2-dependent, and suggests that priming is critical for subsequent multi-lineage differentiation.


Assuntos
Cromatina/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas/metabolismo , RNA Polimerase II/metabolismo , Diferenciação Celular/genética , Histonas/genética , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes/metabolismo , Proteínas/genética , RNA Polimerase II/genética
17.
J Cell Biol ; 186(2): 243-54, 2009 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-19635842

RESUMO

Antigenic variation allows Trypanosoma brucei to evade the host immune response by switching the expression of 1 out of approximately 15 telomeric variant surface glycoprotein (VSG) expression sites (ESs). VSG ES transcription is mediated by RNA polymerase I in a discrete nuclear site named the ES body (ESB). However, nothing is known about how the monoallelic VSG ES transcriptional state is maintained over generations. In this study, we show that during S and G2 phases and early mitosis, the active VSG ES locus remains associated with the single ESB and exhibits a delay in the separation of sister chromatids relative to control loci. This delay is dependent on the cohesin complex, as partial knockdown of cohesin subunits resulted in premature separation of sister chromatids of the active VSG ES. Cohesin depletion also prompted transcriptional switching from the active to previously inactive VSG ESs. Thus, in addition to maintaining sister chromatid cohesion during mitosis, the cohesin complex plays an essential role in the correct epigenetic inheritance of the active transcriptional VSG ES state.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Transcrição Gênica , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Animais , Variação Antigênica , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Substâncias Macromoleculares/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Telômero/metabolismo , Trypanosoma brucei brucei/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia , Coesinas
18.
EMBO Rep ; 10(3): 252-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19165144

RESUMO

In the protozoan parasite Trypanosoma brucei, the two main surface glycoprotein genes are transcribed by RNA polymerase I (pol I) instead of RNA pol II, the polymerase committed to the production of mRNA in eukaryotes. This unusual feature might be accomplished by the recruitment of specific subunits or cofactors that allow pol I to transcribe protein-coding RNAs. Here, we report that transcription mediated by pol I requires TbRPB7, a dissociable subunit of the pol II complex. TbRPB7 was found to interact with two pol I-specific subunits, TbRPA1 and TbRPB6z. Pol I-specific transcription was affected on depletion of TbRPB7 in run-on assays, whereas recombinant TbRPB7 increased transcription driven by a pol I promoter. These results represent a unique example of a functional RNA polymerase chimaera consisting of a core pol I complex that recruits a specific pol II subunit.


Assuntos
Subunidades Proteicas/metabolismo , Proteínas de Protozoários/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase I/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/enzimologia , Animais , Núcleo Celular/metabolismo , Genes Reporter , Subunidades Proteicas/genética , Proteínas de Protozoários/genética , Interferência de RNA , RNA Polimerase I/genética , RNA Polimerase II/química , RNA Polimerase II/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/genética
19.
Trends Microbiol ; 15(6): 263-70, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17481901

RESUMO

The influence of nuclear architecture on the regulation of developmental gene expression has recently become evident in many organisms ranging from yeast to humans. During interphase, chromosomes and nuclear structures are in constant motion; therefore, correct temporal association is needed to meet the requirements of gene expression. Trypanosoma brucei is an excellent model system in which to analyze nuclear spatial implications in the regulation of gene expression because the two main surface-protein genes (procyclin and VSG) are transcribed by the highly compartmentalized RNA polymerase I and undergo distinct transcriptional activation or downregulation during developmental differentiation. Furthermore, the infective bloodstream form of the parasite undergoes antigenic variation, displaying sequentially different types of VSG by allelic exclusion. Here, we discuss recent advances in understanding the role of chromosomal nuclear positioning in the regulation of gene expression in T. brucei.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Expressão Gênica , Trypanosoma brucei brucei/genética , Alelos , Animais , Variação Antigênica , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos/metabolismo , Espaço Intranuclear , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Polimerase I/fisiologia , Telômero/genética , Transcrição Gênica , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
20.
J Cell Biol ; 176(2): 133-9, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17210949

RESUMO

Interphase nuclear repositioning of chromosomes has been implicated in the epigenetic regulation of RNA polymerase (pol) II transcription. However, little is known about the nuclear position-dependent regulation of RNA pol I-transcribed loci. Trypanosoma brucei is an excellent model system to address this question because its two main surface protein genes, procyclin and variant surface glycoprotein (VSG), are transcribed by pol I and undergo distinct transcriptional activation or downregulation events during developmental differentiation. Although the monoallelically expressed VSG locus is exclusively localized to an extranucleolar body in the bloodstream form, in this study, we report that nonmutually exclusive procyclin genes are located at the nucleolar periphery. Interestingly, ribosomal DNA loci and pol I transcription activity are restricted to similar perinucleolar positions. Upon developmental transcriptional downregulation, however, the active VSG promoter selectively undergoes a rapid and dramatic repositioning to the nuclear envelope. Subsequently, the VSG promoter region was subjected to chromatin condensation. We propose a model whereby the VSG expression site pol I promoter is selectively targeted by temporal nuclear repositioning during developmental silencing.


Assuntos
Posicionamento Cromossômico , Inativação Gênica , Regiões Promotoras Genéticas/genética , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Amanitinas/farmacologia , Animais , Diferenciação Celular/genética , Linhagem Celular , Nucléolo Celular/química , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , DNA Ribossômico/genética , Nucleotídeos de Desoxiuracil/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Glicoproteínas de Membrana/genética , Membrana Nuclear/metabolismo , Proteínas de Protozoários/genética , RNA Polimerase I/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica/efeitos dos fármacos , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...