Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37836621

RESUMO

A theoretical analysis of the potential inhibition of human sucrase-isomaltase (SI) by flavonoids was carried out with the aim of identifying potential candidates for an alternative treatment of type 2 diabetes. Two compounds from maize silks, maysin and luteolin, were selected to be studied with the structure-based density functional theory (DFT), molecular docking (MDock), and molecular dynamics (MD) approaches. The docking score and MD simulations suggested that the compounds maysin and luteolin presented higher binding affinities in N-terminal sucrase-isomaltase (NtSI) than in C-terminal sucrase-isomaltase (CtSI). The reactivity parameters, such as chemical hardness (η) and chemical potential (µ), of the ligands, as well as of the active site amino acids of the NtSI, were calculated by the meta-GGA M06 functional in combination with the 6-31G(d) basis set. The lower value of chemical hardness calculated for the maysin molecule indicated that this might interact more easily with the active site of NtSI, in comparison with the values of the acarbose and luteolin structures. Additionally, a possible oxidative process was proposed through the quantum chemical calculations of the electronic charge transfer values (∆N) between the active site amino acids of the NtSI and the ligands. In addition, maysin displayed a higher ability to generate more oxidative damage in the NtSI active site. Our results suggest that maysin and luteolin can be used to develop novel α-glucosidase inhibitors via NtSI inhibition.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Zea mays/metabolismo , Simulação de Acoplamento Molecular , Luteolina/farmacologia , Oligo-1,6-Glucosidase/química , Sacarase/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Aminoácidos
2.
Front Chem ; 10: 907556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991614

RESUMO

New organic molecules containing five different compounds, commonly called p-linkers, located between the triphenylamine units, were theoretically designed and analyzed in order to be proposed as new hole transport materials (HTMs) in perovskite solar cells, in total ten new molecules were analyzed. The electronic, optical and hole transport properties were determined, similarly, the relationship of these properties with their molecular structure was also investigated by Density Functional Theory (DFT) and Density Functional Tight Binding (DFTB) calculations. Eight of the ten analyzed compounds exhibited the main absorption band out of the visible region; therefore these compounds did not present an overlap with the absorption spectra of the typical methylammonium lead iodide (MAPI) hybrid-perovskite. The results showed that the Highest occupied molecular orbital (HOMO) levels of the compounds are higher than the perovskite HOMO level, and in some cases these are even higher than the Spiro-OMeTAD HOMO. The calculated electronic couplings and the reorganization energy values provided useful information in order to determine if the systems were hole or electron transport materials.

3.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884695

RESUMO

Antibiotics are being less effective, which leads to high mortality in patients with infections and a high cost for the recovery of health, and the projections that are had for the future are not very encouraging which has led to consider antimicrobial resistance as a global health problem and to be the object of study by researchers. Although resistance to antibiotics occurs naturally, its appearance and spread have been increasing rapidly due to the inappropriate use of antibiotics in recent decades. A bacterium becomes resistant due to the transfer of genes encoding antibiotic resistance. Bacteria constantly mutate; therefore, their defense mechanisms mutate, as well. Nanotechnology plays a key role in antimicrobial resistance due to materials modified at the nanometer scale, allowing large numbers of molecules to assemble to have a dynamic interface. These nanomaterials act as carriers, and their design is mainly focused on introducing the temporal and spatial release of the payload of antibiotics. In addition, they generate new antimicrobial modalities for the bacteria, which are not capable of protecting themselves. So, nanoparticles are an adjunct mechanism to improve drug potency by reducing overall antibiotic exposure. These nanostructures can overcome cell barriers and deliver antibiotics to the cytoplasm to inhibit bacteria. This work aims to give a general vision between the antibiotics, the nanoparticles used as carriers, bacteria resistance, and the possible mechanisms that occur between them.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Portadores de Fármacos/química , Farmacorresistência Bacteriana , Compostos Inorgânicos/administração & dosagem , Nanopartículas/administração & dosagem , Antibacterianos/química , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/microbiologia , Humanos , Compostos Inorgânicos/química , Nanopartículas/química
4.
J Mol Model ; 24(12): 336, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413890

RESUMO

Here, we report theoretical research into the interaction of the drug tamoxifen drug with tripeptides found in the tumor environment-specifically, asparagine-glycine-arginine (NGR) and arginine-glycine-aspartic acid (RGD). Reactivity parameters of these tripeptides were calculated and their intrinsic reactivities and cross-reactivities were analyzed. The interactions of the tripeptides with the nanodiamond-tamoxifen (ND-TAM) complex where the nanodiamond acts as a nanocarrier were also examined theoretically. In addition, their intestinal absorption was predicted based on the polar surface area. The results showed that tamoxifen interacts with RGD, and this interaction remained after the addition of the nanodiamond. An analysis of the chemical hardnesses of the tripeptides was carried out to explore their possible use as synthetic vectors when joined to the nanodiamond. Results indicated that NGR is the most stable of the tripeptides and could be used for active targeting. All calculations were implemented using the conceptual framework of density functional theory.


Assuntos
Teoria da Densidade Funcional , Oligopeptídeos/química , Tamoxifeno/química , Antineoplásicos Hormonais/química , Antineoplásicos Hormonais/metabolismo , Antineoplásicos Hormonais/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos/efeitos dos fármacos , Humanos , Modelos Moleculares , Nanodiamantes/administração & dosagem , Nanodiamantes/química , Neoplasias/química , Neoplasias/metabolismo , Neoplasias/patologia , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacocinética , Ligação Proteica/efeitos dos fármacos , Tamoxifeno/metabolismo , Tamoxifeno/farmacocinética , Termodinâmica , Microambiente Tumoral/efeitos dos fármacos
5.
Front Chem ; 6: 293, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057897

RESUMO

In this paper, the antiestrogenic properties of Tamoxifen analogs have been investigated and a theoretical report of its analogs interaction with the pocket site of some hormone receptors are presented. Analogs were generated by modification of the hydrophilic functional group of Tamoxifen by hydroxyl, amide, carboxyl, and sulfhydryl functional groups, in an attempt to improve their activity and selectivity. The analogs exhibit a negative binding energy in the estrogen and progesterone receptors, which indicates a spontaneous interaction between the analogs and the pocket site in the hormone receptors. The values of the molecular polar surface area indicate that the analogs have good permeability and are strong electrophiles. The couplings showed electrostatic interactions such as hydrogen bond and π-π interactions. According with the Lipinsky Rule of Five, the four analogs presented a good biodistribution, permeability, and pharmacological action on the hormone receptors. The analysis of the charge transfer suggests a limited enhanced oxidative damage in the estrogen receptor that not takes place with the progesterone receptor.

6.
Molecules ; 22(10)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29048376

RESUMO

The use of nanodiamonds as anticancer drug delivery vehicles has received much attention in recent years. In this theoretical paper, we propose using different esterification methods for nanodiamonds. The monomers proposed are 2-hydroxypropanal, polyethylene glycol, and polyglicolic acid. Specifically, the hydrogen bonds, infrared (IR) spectra, molecular polar surface area, and reactivity parameters are analyzed. The monomers proposed for use in esterification follow Lipinski's rule of five, meaning permeability is good, they have good permeation, and their bioactivity is high. The results show that the complex formed between tamoxifen and nanodiamond esterified with polyglicolic acid presents the greatest number of hydrogen bonds and a good amount of molecular polar surface area. Calculations concerning the esterified nanodiamond and reactivity parameters were performed using Density Functional Theory with the M06 functional and the basis set 6-31G (d); for the esterified nanodiamond-Tamoxifen complexes, the semi-empirical method PM6 was used. The solvent effect has been taken into account by using implicit modelling and the conductor-like polarizable continuum model.


Assuntos
Aldeídos/química , Biologia Computacional/métodos , Nanodiamantes/química , Polietilenoglicóis/química , Neoplasias da Mama/tratamento farmacológico , Esterificação , Feminino , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...