Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-25314569

RESUMO

The development of condensed-phase detonation instabilities is simulated using moving window molecular dynamics and a generic AB model of a high explosive. It is found that an initially planar detonation front with one-dimensional flow can become unstable through development of transverse perturbations resulting in highly inhomogeneous and complex two- and three-dimensional distributions of pressure and other variables within the detonation front. Chemical reactions are initiated in localized transverse shock fronts and Mach stems with a pressure and temperature higher than those predicted by classic Zel'dovich, von Neumann, and Doering detonation theory. The two-dimensional cellular and transverse and three-dimensional pulsating detonation structures are found by varying the physico-chemical properties of AB energetic material, sample geometry, and boundary conditions. The different regimes of condensed-phase detonation that can develop from instabilities within a planar detonation front exhibit structures, although at a much smaller scale, that are similar to those observed in gases and diluted liquids.


Assuntos
Explosões , Substâncias Explosivas/química , Simulação de Dinâmica Molecular , Temperatura
2.
J Phys Chem A ; 118(38): 8695-700, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25226115

RESUMO

Efforts to synthesize, characterize, and recover novel polynitrogen energetic materials have driven attempts to subject high nitrogen content precursor materials (in particular, metal and nonmetal azides) to elevated pressures. Here we present a combined theoretical and experimental study of the high-pressure behavior of ammonium azide (NH4N3). Using density functional theory, we have considered the relative thermodynamic stability of the material with respect to two other crystal phases, namely, trans-tetrazene (TTZ), and also a novel hydronitrogen solid (HNS) of the form (NH)4, that was recently predicted to become relatively stable under high pressure. Experimentally, we have measured the Raman spectra of NH4N3 up to 71 GPa at room temperature. Our calculations demonstrate that the HNS becomes stable only at pressures much higher (89.4 GPa) than previously predicted (36 GPa). Our Raman spectra are consistent with previous reports up to lower pressures and at higher pressures, while some additional subtle behavior is observed (e.g., mode splitting), there is again no evidence of a phase transition to either TTZ or the HNS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA