Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(37): 13106-13122, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719012

RESUMO

Previous studies in Leishmania mexicana have identified the cytoskeletal protein KHARON as being important for both flagellar trafficking of the glucose transporter GT1 and for successful cytokinesis and survival of infectious amastigote forms inside mammalian macrophages. KHARON is located in three distinct regions of the cytoskeleton: the base of the flagellum, the subpellicular microtubules, and the mitotic spindle. To deconvolve the different functions for KHARON, we have identified two partner proteins, KHAP1 and KHAP2, which associate with KHARON. KHAP1 is located only in the subpellicular microtubules, whereas KHAP2 is located at the subpellicular microtubules and the base of the flagellum. Both KHAP1 and KHAP2 null mutants are unable to execute cytokinesis but are able to traffic GT1 to the flagellum. These results confirm that KHARON assembles into distinct functional complexes and that the subpellicular complex is essential for cytokinesis and viability of disease-causing amastigotes but not for flagellar membrane trafficking.


Assuntos
Divisão Celular , Proteínas do Citoesqueleto/metabolismo , Flagelos/metabolismo , Leishmania mexicana/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas do Citoesqueleto/genética , Flagelos/genética , Leishmania mexicana/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Complexos Multiproteicos/genética , Transporte Proteico , Proteínas de Protozoários/genética
2.
mSphere ; 3(4)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068561

RESUMO

Glucose transporters are important for viability and infectivity of the disease-causing amastigote stages of Leishmania mexicana The Δgt1-3 null mutant, in which the 3 clustered glucose transporter genes, GT1, GT2, and GT3, have been deleted, is strongly impaired in growth inside macrophages in vitro We have now demonstrated that this null mutant is also impaired in virulence in the BALB/c murine model of infection and forms lesions considerably more slowly than wild-type parasites. Previously, we established that amplification of the PIFTC3 gene, which encodes an intraflagellar transport protein, both facilitated and accompanied the isolation of the original Δgt1-3 null mutant generated in extracellular insect-stage promastigotes. We have now isolated Δgt1-3 null mutants without coamplification of PIFTC3 These amplicon-negative null mutants are further impaired in growth as promastigotes, compared to the previously described null mutants containing the PIFTC3 amplification. In contrast, the GT3 glucose transporter plays an especially important role in promoting amastigote viability. A line that expresses only the single glucose transporter GT3 grows as well inside macrophages and induces lesions in animals as robustly as do wild-type amastigotes, but lines expressing only the GT1 or GT2 transporters replicate poorly in macrophages. Strikingly, GT3 is restricted largely to the endoplasmic reticulum in intracellular amastigotes. This observation raises the possibility that GT3 may play an important role as an intracellular glucose transporter in the infectious stage of the parasite life cycle.IMPORTANCE Glucose transport plays important roles for in vitro growth of insect-stage promastigotes and especially for viability of intramacrophage mammalian host-stage amastigotes of Leishmania mexicana However, the roles of the three distinct glucose transporters, GT1, GT2, and GT3, in parasite viability inside macrophages and virulence in mice have not been fully explored. Parasite lines expressing GT1 or GT2 alone were strongly impaired in growth inside macrophages, but lines expressing GT3 alone infected macrophages and caused lesions in mice as robustly as wild-type parasites. Notably, GT3 localizes to the endoplasmic reticulum of intracellular amastigotes, suggesting a potential role for salvage of glucose from that organelle for viability of infectious amastigotes. This study establishes the unique role of GT3 for parasite survival inside host macrophages and for robust virulence in infected animals.


Assuntos
Retículo Endoplasmático/parasitologia , Proteínas Facilitadoras de Transporte de Glucose/genética , Leishmania mexicana/patogenicidade , Proteínas de Protozoários/genética , Animais , Linhagem Celular , Feminino , Técnicas de Inativação de Genes , Leishmania mexicana/genética , Estágios do Ciclo de Vida , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Mutação , Virulência
3.
Mol Microbiol ; 108(2): 143-158, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29411460

RESUMO

Leishmania parasites target macrophages in their mammalian hosts and proliferate within the mature phagolysosome compartment of these cells. Intracellular amastigote stages are dependent on sugars as a major carbon source in vivo, but retain the capacity to utilize other carbon sources. To investigate whether amastigotes can switch to using other carbon sources, we have screened for suppressor strains of the L. mexicana Δlmxgt1-3 mutant which lacks the major glucose transporters LmxGT1-3. We identified a novel suppressor line (Δlmxgt1-3s2 ) that has restored growth in rich culture medium and virulence in ex vivo infected macrophages, but failed to induce lesions in mice. Δlmxgt1-3s2 amastigotes had lower rates of glucose utilization than the parental line and primarily catabolized non-essential amino acids. The increased mitochondrial metabolism of this line was associated with elevated levels of intracellular reactive oxygen species, as well as increased sensitivity to inhibitors of the tricarboxylic acid (TCA) cycle, including nitric oxide. These results suggest that hardwired sugar addiction of Leishmania amastigotes contributes to the intrinsic resistance of this stage to macrophage microbicidal processes in vivo, and that these stages have limited capacity to switch to using other carbon sources.


Assuntos
Aminoácidos/metabolismo , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/parasitologia , Macrófagos/parasitologia , Animais , Carbono/metabolismo , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Humanos , Leishmania mexicana/genética , Leishmania mexicana/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Virulência
4.
Front Microbiol ; 6: 794, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300862

RESUMO

Coxiella burnetii is a bacterium that thrives in an acidic parasitophorous vacuole (PV) derived from lysosomes. Leishmania mexicana, a eukaryote, has also independently evolved to live in a morphologically similar PV. As Coxiella and Leishmania are highly divergent organisms that cause different diseases, we reasoned that their respective infections would likely elicit distinct host responses despite producing phenotypically similar parasite-containing vacuoles. The objective of this study was to investigate, at the molecular level, the macrophage response to each pathogen. Infection of THP-1 (human monocyte/macrophage) cells with Coxiella and Leishmania elicited disparate host responses. At 5 days post-infection, when compared to uninfected cells, 1057 genes were differentially expressed (746 genes up-regulated and 311 genes down-regulated) in C. burnetii infected cells, whereas 698 genes (534 genes up-regulated and 164 genes down-regulated) were differentially expressed in L. mexicana infected cells. Interestingly, of the 1755 differentially expressed genes identified in this study, only 126 genes (~7%) are common to both infections. We also discovered that 1090 genes produced mRNA isoforms at significantly different levels under the two infection conditions, suggesting that alternate proteins encoded by the same gene might have important roles in host response to each infection. Additionally, we detected 257 micro RNAs (miRNAs) that were expressed in THP-1 cells, and identified miRNAs that were specifically expressed during Coxiella or Leishmania infections. Collectively, this study identified host mRNAs and miRNAs that were influenced by Coxiella and/or Leishmania infections, and our data indicate that although their PVs are morphologically similar, Coxiella and Leishmania have evolved different strategies that perturb distinct host processes to create and thrive within their respective intracellular niches.

5.
PLoS One ; 10(8): e0134432, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26266938

RESUMO

In a variety of eukaryotes, flagella play important roles both in motility and as sensory organelles that monitor the extracellular environment. In the parasitic protozoan Leishmania mexicana, one glucose transporter isoform, LmxGT1, is targeted selectively to the flagellar membrane where it appears to play a role in glucose sensing. Trafficking of LmxGT1 to the flagellar membrane is dependent upon interaction with the KHARON1 protein that is located at the base of the flagellar axoneme. Remarkably, while Δkharon1 null mutants are viable as insect stage promastigotes, they are unable to survive as amastigotes inside host macrophages. Although Δkharon1 promastigotes enter macrophages and transform into amastigotes, these intracellular parasites are unable to execute cytokinesis and form multinucleate cells before dying. Notably, extracellular axenic amastigotes of Δkharon1 mutants replicate and divide normally, indicating a defect in the mutants that is only exhibited in the intra-macrophage environment. Although the flagella of Δkharon1 amastigotes adhere to the phagolysomal membrane of host macrophages, the morphology of the mutant flagella is often distorted. Additionally, these null mutants are completely avirulent following injection into BALB/c mice, underscoring the critical role of the KHARON1 protein for viability of intracellular amastigotes and disease in the animal model of leishmaniasis.


Assuntos
Proteínas do Citoesqueleto/genética , Flagelos/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Leishmaniose/genética , Macrófagos/parasitologia , Proteínas de Protozoários/genética , Animais , Citocinese/genética , Flagelos/parasitologia , Leishmania mexicana/genética , Leishmania mexicana/patogenicidade , Leishmaniose/parasitologia , Leishmaniose/patologia , Camundongos , Mutação
6.
FASEB J ; 29(1): 11-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25300620

RESUMO

In Leishmania mexicana parasites, a unique glucose transporter, LmxGT1, is selectively targeted to the flagellar membrane, suggesting a possible sensory role that is often associated with ciliary membrane proteins. Expression of LmxGT1 is down-regulated ∼20-fold by increasing cell density but is up-regulated ∼50-fold by depleting glucose from the medium, and the permease is strongly down-regulated when flagellated insect-stage promastigotes invade mammalian macrophages and transform into intracellular amastigotes. Regulation of LmxGT1 expression by glucose and during the lifecycle operates at the level of protein stability. Significantly, a ∆lmxgt1 null mutant, grown in abundant glucose, undergoes catastrophic loss of viability when parasites deplete glucose from the medium, a property not exhibited by wild-type or add-back lines. These results suggest that LmxGT1 may function as a glucose sensor that allows parasites to enter the stationary phase when they deplete glucose and that in the absence of this sensor, parasites do not maintain viability when they run out of glucose. However, alternate roles for LmxGT1 in monitoring glucose availability are considered. The absence of known sensory receptors with defined ligands and biologic functions in Leishmania and related kinetoplastid parasites underscores the potential significance of these observations.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Leishmania mexicana/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Linhagem Celular , Feminino , Flagelos/metabolismo , Regulação da Expressão Gênica , Genes de Protozoários , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Humanos , Leishmania mexicana/genética , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Proteínas de Protozoários/genética , Psychodidae/parasitologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
7.
J Biol Chem ; 288(31): 22721-33, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23766511

RESUMO

The LmxGT1 glucose transporter is selectively targeted to the flagellum of the kinetoplastid parasite Leishmania mexicana, but the mechanism for targeting this and other flagella-specific membrane proteins among the Kinetoplastida is unknown. To address the mechanism of flagellar targeting, we employed in vivo cross-linking, tandem affinity purification, and mass spectrometry to identify a novel protein, KHARON1 (KH1), which is important for the flagellar trafficking of LmxGT1. Kh1 null mutant parasites are strongly impaired in flagellar targeting of LmxGT1, and trafficking of the permease was arrested in the flagellar pocket. Immunolocalization revealed that KH1 is located at the base of the flagellum, within the flagellar pocket, where it associates with the proximal segment of the flagellar axoneme. We propose that KH1 mediates transit of LmxGT1 from the flagellar pocket into the flagellar membrane via interaction with the proximal portion of the flagellar axoneme. KH1 represents the first component involved in flagellar trafficking of integral membrane proteins among parasitic protozoa. Of considerable interest, Kh1 null mutants are strongly compromised for growth as amastigotes within host macrophages. Thus, KH1 is also important for the disease causing stage of the parasite life cycle.


Assuntos
Flagelos/metabolismo , Glucose/metabolismo , Leishmania mexicana/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Cromatografia de Afinidade , Primers do DNA , Dados de Sequência Molecular , Transporte Proteico , Proteínas de Protozoários/química , Homologia de Sequência de Aminoácidos
8.
Mol Microbiol ; 87(2): 412-29, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23170981

RESUMO

The genome of Leishmania mexicana encompasses a cluster of three glucose transporter genes designated LmxGT1, LmxGT2 and LmxGT3. Functional and genetic studies of a cluster null mutant (Δlmxgt1-3) have dissected the roles of these proteins in Leishmania metabolism and virulence. However, null mutants were recovered at very low frequency, and comparative genome hybridizations revealed that Δlmxgt1-3 mutants contained a linear extrachromosomal 40 kb amplification of a region on chromosome 29 not amplified in wild type parasites. These data suggested a model where this 29-40k amplicon encoded a second site suppressor contributing to parasite survival in the absence of GT1-3 function. To test this, we quantified the frequency of recovery of knockouts in the presence of individual overexpressed open reading frames covering the 29-40k amplicon. The data mapped the suppressor activity to PIFTC3, encoding a component of the intraflagellar transport pathway. We discuss possible models by which PIFTC3 might act to facilitate loss of GTs specifically. Surprisingly, by plasmid segregation we showed that continued PIFTC3 overexpression was not required for Δlmxgt1-3 viability. These studies provide the first evidence that genetic suppression can occur by providing critical biological functions transiently. This novel form of genetic suppression may extend to other genes, pathways and organisms.


Assuntos
Técnicas de Inativação de Genes , Leishmania mexicana/genética , Proteínas de Transporte de Monossacarídeos/genética , Supressão Genética , Leishmania mexicana/metabolismo , Viabilidade Microbiana , Modelos Biológicos
9.
Mol Biochem Parasitol ; 175(1): 39-48, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20869991

RESUMO

Glucose is a major nutrient in the insect vector stage of Leishmania parasites. Glucose transporter null mutants of Leishmania mexicana exhibit profound phenotypic changes in both insect stage promastigotes and mammalian host stage amastigotes that reside within phagolysosomes of host macrophages. Some of these phenotypic changes could be either mediated or attenuated by changes in gene expression that accompany deletion of the glucose transporter genes. To search for changes in protein expression, the profile of proteins detected on two-dimensional gels was compared for wild type and glucose transporter null mutant promastigotes. A total of 50 spots whose intensities changed significantly and consistently in multiple experiments were detected, suggesting that a cohort of proteins is altered in expression levels in the null mutant parasites. Following identification of proteins by mass spectrometry, 3 such regulated proteins were chosen for more detailed analysis: mitochondrial aldehyde dehydrogenase, ribokinase, and hexokinase. Immunoblots employing antisera against these enzymes confirmed that their levels were upregulated, both in glucose transporter null mutants and in wild type parasites starved for glucose. Quantitative reverse transcriptase PCR (qRT-PCR) revealed that the levels of mRNAs encoding these enzymes were also enhanced. Global expression profiling using microarrays revealed a limited number of additional changes, although the sensitivity of the microarrays to detect modest changes in amplitude was less than that of two-dimensional gels. Hence, there is likely to be a network of proteins whose expression levels are altered by genetic ablation of glucose transporters, and much of this regulation may be reflected by changes in the levels of the cognate mRNAs. Some of these changes in protein expression may reflect an adaptive response of the parasites to limitation of glucose.


Assuntos
Deleção de Genes , Perfilação da Expressão Gênica , Leishmania mexicana/genética , Leishmania mexicana/metabolismo , Proteínas de Transporte de Monossacarídeos/deficiência , Proteoma/análise , Proteínas de Protozoários/análise , Eletroforese em Gel Bidimensional , Immunoblotting , Espectrometria de Massas , Análise em Microsséries , RNA Mensageiro/biossíntese , RNA de Protozoário/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Mol Microbiol ; 71(2): 369-81, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19017272

RESUMO

A glucose transporter null mutant of the parasitic protozoan Leishmania mexicana, in which three linked glucose transporter genes have been deleted by targeted gene replacement, is unable to replicate as amastigote forms within phagolysomes of mammalian host macrophages and is avirulent. Spontaneous suppressors of the null mutant have been isolated that partially restore replication of parasites within macrophages. These suppressor mutants have amplified the gene for an alternative hexose transporter, the LmGT4 permease (previously called the D2 permease), on a circular extrachromosomal element, and they overexpress LmGT4 mRNA and protein. The suppressors have also regained the ability to transport hexoses, and they have reverted other phenotypes of the null mutant exhibiting enhanced resistance to oxidative killing, heat shock and starvation for nutrients, as well as augmented levels of the storage carbohydrate beta-mannan, increased cell size and increased growth as insect stage promastigotes compared with the unsuppressed mutant. Complementation of the null mutant with the LmGT4 gene on a multicopy episomal expression vector also reverted these phenotypes, confirming that suppression results from amplification of the LmGT4 gene. These results underscore the importance of hexose transporters for the infectious stage of the parasite life cycle.


Assuntos
Amplificação de Genes , Leishmania mexicana/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Hibridização Genômica Comparativa , Genes de Protozoários , Teste de Complementação Genética , Hexoses/metabolismo , Leishmania mexicana/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas de Protozoários/genética , RNA de Protozoário/genética
11.
Mol Biochem Parasitol ; 153(1): 9-18, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17306380

RESUMO

Glucose is a major source of energy and carbon in promastigotes of Leishmania mexicana, and its uptake is mediated by three glucose transporters whose genes are encoded within a single cluster. A null mutant in which the glucose transporter gene cluster was deleted by homologous gene replacement was generated previously and shown to grow more slowly than wild type promastigotes but not to be viable as amastigotes in primary tissue culture macrophages or in axenic culture. Further phenotypic characterization demonstrates that the null mutant is unable to import glucose, mannose, fructose, or galactose and that each of the three glucose transporter isoforms, LmGT1, LmGT2, and LmGT3, is capable of transporting each of these hexoses. Complementation of the null mutant with each isoform is able to restore growth in each of the four hexoses to wild type levels. Null mutant promastigotes are reduced in size to about 2/3 the volume of wild type parasites. In addition, the null mutants are significantly more sensitive to oxidative stress than their wild type counterparts. These results underscore the importance of glucose transporters in the parasite life cycle and suggest reasons for their non-viability in the disease-causing amastigote stage.


Assuntos
Leishmania mexicana/genética , Leishmania mexicana/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Animais , Genes de Protozoários , Teste de Complementação Genética , Hexoses/metabolismo , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Leishmania mexicana/crescimento & desenvolvimento , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Estresse Oxidativo , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
12.
J Biol Chem ; 281(29): 20068-76, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16707495

RESUMO

Leishmania mexicana are parasitic protozoa that express a variety of glycoconjugates that play important roles in their biology as well as the storage carbohydrate beta-mannan, which is an essential virulence factor for survival of intracellular amastigote forms in the mammalian host. Glucose transporter null mutants, which are viable as insect form promastigotes but not as amastigotes, do not take up glucose and other hexoses but are still able to synthesize these glycoconjugates and beta-mannan, although at reduced levels. Synthesis of these carbohydrate-containing macromolecules could be accounted for by incorporation of non-carbohydrate precursors into carbohydrates by gluconeogenesis. However, the significantly reduced level of the virulence factor beta-mannan in the glucose transporter null mutants compared with wild-type parasites may contribute to the non-viability of these null mutants in the disease-causing amastigote stage of the life cycle.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Leishmania mexicana/metabolismo , Leishmania mexicana/patogenicidade , Acetatos/metabolismo , Alanina/metabolismo , Animais , Ácido Aspártico/metabolismo , Linhagem Celular , Gluconeogênese , Proteínas Facilitadoras de Transporte de Glucose/deficiência , Glicerol/metabolismo , Leishmania mexicana/genética , Mananas/metabolismo , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Virulência
13.
Proc Natl Acad Sci U S A ; 100(7): 3901-6, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12651954

RESUMO

Both insect and mammalian life cycle stages of Leishmania mexicana take up glucose and express all three isoforms encoded by the LmGT glucose transporter gene family. To evaluate glucose transporter function in intact parasites, a null mutant line has been created by targeted disruption of the LmGT locus that encompasses the LmGT1, LmGT2, and LmGT3 genes. This deltalmgt null mutant exhibited no detectable glucose transport activity. The growth rate of the deltalmgt knockout in the promastigote stage was reduced to a rate comparable with that of WT cells grown in the absence of glucose. deltalmgt cells also exhibited dramatically reduced infectivity to macrophages, demonstrating that expression of LmGT isoforms is essential for viability of amastigotes. Furthermore, WT L. mexicana were not able to grow as axenic culture form amastigotes if glucose was withdrawn from the medium, implying that glucose is an essential nutrient in this life cycle stage. Expression of either LmGT2 or LmGT3, but not of LmGT1, in deltalmgt null mutants significantly restored growth as promastigotes, but only LmGT3 expression substantially rescued amastigote growth in macrophages. Subcellular localization of the three isoforms was investigated in deltalmgt cells expressing individual LmGT isoforms. Using anti-LmGT antiserum and GFP-tagged LmGT fusion proteins, LmGT2 and LmGT3 were localized to the cell body, whereas LmGT1 was localized specifically to the flagellum. These results establish that each glucose transporter isoform has distinct biological functions in the parasite.


Assuntos
Leishmania mexicana/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Cinética , Leishmania mexicana/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA