Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39211237

RESUMO

Neurochemical sensing with implantable devices has gained remarkable attention over the last few decades. A promising area of this research is the progress of novel electrodes as electrochemical tools for neurotransmitter detection in the brain. The boron-doped diamond (BDD) electrode is one such candidate that previously has been reported for its excellent electrochemical properties, including a wide working potential, superior chemical inertness and mechanical stability, good biocompatibility and resistance to fouling. Meanwhile, limited research has been conducted on the BDD as a microelectrode for neurochemical detection. Our team has developed a freestanding, all diamond microelectrode consisting of a boron-doped polycrystalline diamond core, encapsulated in an insulating polycrystalline diamond shell, with a cleaved planar tip for electrochemical sensing. This all-diamond electrode is advantageous due to its - (1) batch fabrication using wafer technology that eliminates traditional hand fabrication errors and inconsistencies, (2) absence of metal-based wires, or foundations, to improve biocompatibility and flexibility, and (3) sp 3 carbon surface with resistance to biofouling, i.e. adsorption of proteins or unwanted molecules at the electrode surface in a biological environment that impedes overall electrode performance. Here, we provide findings on further in vitro testing and development of the freestanding boron-doped diamond microelectrode (BDDME) for neurotransmitter detection using fast scan cyclic voltammetry (FSCV). In this report, we elaborate on - 1) an updated fabrication scheme and work flow to generate all diamond BDDMEs, 2) slow scan cyclic voltammetry measurements of reference and target analytes to understand basic electrochemical behavior of the electrode, and 3) FSCV characterization of common neurotransmitters, and overall favorability of serotonin (5-HT) detection. The BDDME showed a 2-fold increased FSCV response for 5-HT in comparison to dopamine (DA), with a limit of detection of 0.16 µM for 5-HT and 0.26 µM for DA. These results are intended to expand on the development of the next generation BDDME and guide future in vivo experiments, adding to the growing body of literature on implantable devices for neurochemical sensing.

2.
Chem Sci ; 14(35): 9328-9349, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37712031

RESUMO

Experimental and theoretical foundations for femtosecond time-resolved circular dichroism (TRCD) spectroscopy of excitonic systems are presented. In this method, the system is pumped with linearly polarized light and the signal is defined as the difference between the transient absorption spectrum probed with left and with right circularly polarized light. We present a new experimental setup with a polarization grating as key element to generate circularly polarized pulses. Herein the positive (negative) first order of the diffracted light is left-(right-)circularly polarized and serves as a probe pulse in a TRCD experiment. The grating is capable of transferring ultrashort broadband pulses ranging from 470 nm to 720 nm into two separate beams with opposite ellipticity. By applying a specific chopping scheme we can switch between left and right circular polarizations and detect transient absorption (TA) and TRCD spectra on a shot-to-shot basis simultaneously. We perform experiments on a squaraine polymer, investigating excitonic dynamics, and we develop a general theory for TRCD experiments of excitonically coupled systems that we then apply to describe the experimental data in this particular example. At a magic angle of 54.7° between the pump-pulse polarization and the propagation direction of the probe pulse, the TRCD and TA signals become particularly simple to analyze, since the orientational average over random orientations of complexes factorizes into that of the interaction with the pump and the probe pulse, and the intrinsic electric quadrupole contributions to the TRCD signal average to zero for isotropic samples. Application of exciton theory to linear absorption and to linear circular dichroism spectra of squaraine polymers reveals the presence of two fractions of polymer conformations, a dominant helical conformation with close interpigment distances that are suggested to lead to short-range contributions to site energy shifts and excitonic couplings of the squaraine molecules, and a fraction of unfolded random coils. Theory demonstrates that TRCD spectra of selectively excited helices can resolve state populations that are practically invisible in TA spectroscopy due to the small dipole strength of these states. A qualitative interpretation of TRCD and TA spectra in the spectral window investigated experimentally is offered. The 1 ps time component found in these spectra is related to the slow part of exciton relaxation obtained between states of the helix in the low-energy half of the exciton manifold. The dominant 140 ps time constant reflects the decay of excited states to the electronic ground state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA