Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Cell Neurosci ; 10: 7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26858603

RESUMO

A new generation of antiepileptic drugs has emerged; however, one-third of epilepsy patients do not properly respond to pharmacological treatments. The purpose of the present study was to investigate whether time-restricted feeding (TRF) has an anticonvulsant effect and whether this restrictive diet promotes changes in energy metabolism and epigenetic modifications in a pilocarpine-induced seizure model. To resolve our hypothesis, one group of rats had free access to food and water ad libitum (AL) and a second group underwent a TRF schedule. We used the lithium-pilocarpine model to induce status epilepticus (SE), and behavioral seizure monitoring was analyzed. Additionally, an electroencephalography (EEG) recording was performed to verify the effect of TRF on cortical electrical activity after a pilocarpine injection. For biochemical analysis, animals were sacrificed 24 h after SE and hippocampal homogenates were used to evaluate the proteins related to metabolism and chromatin structure. Our results showed that TRF had an anticonvulsant effect as measured by the prolonged latency of forelimb clonus seizure, a decrease in the seizure severity score and fewer animals reaching SE. Additionally, the power of the late phase EEG recordings in the AL group was significantly higher than the TRF group. Moreover, we found that TRF is capable of inducing alterations in signaling pathways that regulate energy metabolism, including an increase in the phosphorylation of AMP dependent kinase (AMPK) and a decrease in the phosphorylation of Akt kinase. Furthermore, we found that TRF was able to significantly increase the beta hydroxybutyrate (ß-HB) concentration, an endogenous inhibitor of histone deacetylases (HDACs). Finally, we found a significant decrease in HDAC activity as well as an increase in acetylation on histone 3 (H3) in hippocampal homogenates from the TRF group. These findings suggest that alterations in energy metabolism and the increase in ß-HB mediated by TRF may inhibit HDAC activity, thus increasing histone acetylation and producing changes in the chromatin structure, which likely facilitates the transcription of a subset of genes that confer anticonvulsant activity.

3.
Front Cell Neurosci ; 9: 58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774124

RESUMO

The role of epigenetic mechanisms in the function and homeostasis of the central nervous system (CNS) and its regulation in diseases is one of the most interesting processes of contemporary neuroscience. In the last decade, a growing body of literature suggests that long-term changes in gene transcription associated with CNS's regulation and neurological disorders are mediated via modulation of chromatin structure. "Epigenetics", introduced for the first time by Waddington in the early 1940s, has been traditionally referred to a variety of mechanisms that allow heritable changes in gene expression even in the absence of DNA mutation. However, new definitions acknowledge that many of these mechanisms used to perpetuate epigenetic traits in dividing cells are used by neurons to control a variety of functions dependent on gene expression. Indeed, in the recent years these mechanisms have shown their importance in the maintenance of a healthy CNS. Moreover, environmental inputs that have shown effects in CNS diseases, such as nutrition, that can modulate the concentration of a variety of metabolites such as acetyl-coenzyme A (acetyl-coA), nicotinamide adenine dinucleotide (NAD(+)) and beta hydroxybutyrate (ß-HB), regulates some of these epigenetic modifications, linking in a precise way environment with gene expression. This manuscript will portray what is currently understood about the role of epigenetic mechanisms in the function and homeostasis of the CNS and their participation in a variety of neurological disorders. We will discuss how the machinery that controls these modifications plays an important role in processes involved in neurological disorders such as neurogenesis and cell growth. Moreover, we will discuss how environmental inputs modulate these modifications producing metabolic and physiological alterations that could exert beneficial effects on neurological diseases. Finally, we will highlight possible future directions in the field of epigenetics and neurological disorders.

4.
Epilepsy Res ; 108(10): 1694-704, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25445237

RESUMO

Seizures have been shown to upregulate the expression of numerous extracellular matrix molecules. Tenascin C (TNC) is an extracellular matrix protein involved in several physiological roles and in pathological conditions. Though TNC upregulation has been described after excitotoxins injection, to date there is no research work on the signal transduction pathway(s) participating in TNC protein overproduction. The aim of this study was to evaluate the role of TGF-ß signaling pathway on TNC upregulation. In this study, we used male rats, which were injected with saline or pilocarpine to induce status epilepticus (SE) and killed 24h, 3 and 7 days after pilocarpine administration. For evaluating biochemical changes, we measured protein content of TNC, TGF-ß1 and phospho-Smad2/3 for localization of TNC in coronal brain hippocampus at 24h, 3 and 7 days after pilocarpine-caused SE. We found a significant increase of TNC protein content in hippocampal homogenates after 1, 3, and 7 days of pilocarpine-caused SE, together with an enhancement of TNC immunoreactivity in several hippocampal layers and the dentate gyrus field where more dramatic changes occurred. We also observed a significant enhancement of protein content of both the TGF-ß1 and the critical downstream transduction effector phospho-Smad2/3 throughout the chronic exposure. Interestingly, animals injected with SB-431542, a TGF-ß-type I receptor inhibitor, decreased TNC content in cytosolic fraction and diminished phospho-Smad2/3 content in both cytoplasmic and nuclear fraction compared with pilocarpine vehicle-injected. These findings suggest the participation of TGF-ß signaling pathway on upregulation of TNC which in turn support the idea that misregulation of this signaling pathway produces changes that may contribute to disease.


Assuntos
Hipocampo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Convulsões/metabolismo , Tenascina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Benzamidas/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Fármacos do Sistema Nervoso Central/farmacologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Dioxóis/farmacologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Masculino , Fosforilação , Pilocarpina , Ratos Wistar , Receptor do Fator de Crescimento Transformador beta Tipo I , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA