Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 144: 334-341, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34547671

RESUMO

Recurrent Neural Networks with Long Short-Term Memory (LSTM) make use of gating mechanisms to mitigate exploding and vanishing gradients when learning long-term dependencies. For this reason, LSTMs and other gated RNNs are widely adopted, being the standard de facto for many sequence modeling tasks. Although the memory cell inside the LSTM contains essential information, it is not allowed to influence the gating mechanism directly. In this work, we improve the gate potential by including information coming from the internal cell state. The proposed modification, named Working Memory Connection, consists in adding a learnable nonlinear projection of the cell content into the network gates. This modification can fit into the classical LSTM gates without any assumption on the underlying task, being particularly effective when dealing with longer sequences. Previous research effort in this direction, which goes back to the early 2000s, could not bring a consistent improvement over vanilla LSTM. As part of this paper, we identify a key issue tied to previous connections that heavily limits their effectiveness, hence preventing a successful integration of the knowledge coming from the internal cell state. We show through extensive experimental evaluation that Working Memory Connections constantly improve the performance of LSTMs on a variety of tasks. Numerical results suggest that the cell state contains useful information that is worth including in the gate structure.


Assuntos
Memória de Longo Prazo , Memória de Curto Prazo , Conhecimento , Aprendizagem , Redes Neurais de Computação
2.
Mol Ecol Resour ; 21(1): 183-200, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32755053

RESUMO

The Odonata are considered among the most endangered freshwater faunal taxa. Their DNA-based monitoring relies on validated reference data sets that are often lacking or do not cover important biogeographical centres of diversification. This study presents the results of a DNA barcoding campaign on Odonata, based on the standard 658-bp 5' end region of the mitochondrial COI gene, involving the collection of 812 specimens (409 of which barcoded) from peninsular Italy and its main islands (328 localities), belonging to all the 88 species (31 Zygoptera and 57 Anisoptera) known from the country. Additional BOLD and GenBank data from Holarctic samples expanded the data set to 1,294 DNA barcodes. A multi-approach species delimitation analysis involving two distance (OT and ABGD) and four tree-based (PTP, MPTP, GMYC and bGMYC) methods was used to explore these data. Of the 88 investigated morphospecies, 75 (85%) unequivocally corresponded to distinct molecular operational units, whereas the remaining ones were classified as 'warnings' (i.e. showing a mismatch between morphospecies assignment and DNA-based species delimitation). These results are in contrast with other DNA barcoding studies on Odonata showing up to 95% of identification success. The species causing warnings were grouped into three categories depending on if they showed low, high or mixed genetic divergence patterns. The analysis of haplotype networks revealed unexpected intraspecific complexity at the Italian, Palearctic and Holarctic scale, possibly indicating the occurrence of cryptic species. Overall, this study provides new insights into the taxonomy of odonates and a valuable basis for future DNA and eDNA-based monitoring studies.


Assuntos
Código de Barras de DNA Taxonômico , Evolução Molecular , Haplótipos , Odonatos/classificação , Animais , Itália , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA