Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
2.
J Pediatr Surg ; 54(11): 2443-2447, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31296329

RESUMO

BACKGROUND/PURPOSE: The presence of lung injury and the factors that contribute to it in infants with congenital diaphragmatic hernia (CDH) have not been objectively measured during their clinical course. In adults with acute respiratory distress syndrome, higher serum levels of surfactant protein D (SP-D) are linked to lung injury and worse outcomes. We hypothesized that serum SP-D levels would be elevated in CDH infants and that the levels would correlate to the amount of lung injury present. METHODS: In this retrospective cohort study, serum SP-D levels were analyzed in 37 CDH infants and 5 control infants using a commercially available enzyme-linked immunosorbent assay kit. RESULTS: Infants with more severe CDH had a statistically significant increase (p < 0.001) in serum SP-D over their first month of life. SP-D levels in CDH infants were similar to control infants while on extracorporeal membrane oxygenation (ECMO) but were 2.5-fold higher (p = 0.03) than controls following ECMO termination. SP-D levels increased 1.6-fold following surgical repair of the diaphragm and were significantly higher in the second week following surgery when compared to pre-operative levels (p < 0.03). CONCLUSIONS: These results demonstrate that CDH infants experience lung injury during the first week of life, around the time of surgery, and at the time of ECMO termination. Level II prognosis study.


Assuntos
Hérnias Diafragmáticas Congênitas/sangue , Hérnias Diafragmáticas Congênitas/patologia , Lesão Pulmonar/sangue , Lesão Pulmonar/patologia , Oxigenação por Membrana Extracorpórea , Hérnias Diafragmáticas Congênitas/terapia , Humanos , Lactente , Recém-Nascido , Masculino , Proteína D Associada a Surfactante Pulmonar/sangue , Surfactantes Pulmonares/sangue , Estudos Retrospectivos , Fatores de Tempo
3.
Stem Cell Reports ; 10(1): 212-227, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29249663

RESUMO

Here, we show that HEMATOLOGICAL AND NEUROLOGICAL EXPRESSED 1-LIKE (HN1L) is a targetable breast cancer stem cell (BCSC) gene that is altered in 25% of whole breast cancer and significantly correlated with shorter overall or relapse-free survival in triple-negative breast cancer (TNBC) patients. HN1L silencing reduced the population of BCSCs, inhibited tumor initiation, resensitized chemoresistant tumors to docetaxel, and hindered cancer progression in multiple TNBC cell line-derived xenografts. Additionally, gene signatures associated with HN1L correlated with shorter disease-free survival of TNBC patients. We defined HN1L as a BCSC transcription regulator for genes involved in the LEPR-STAT3 signaling axis as HN1L binds to a putative consensus upstream sequence of STAT3, LEPTIN RECEPTOR, and MIR-150. Our data reveal that BCSCs in TNBC depend on the transcription regulator HN1L for the sustained activation of the LEPR-STAT3 pathway, which makes it a potentially important target for both prognosis and BCSC therapy.


Assuntos
Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores para Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Receptores para Leptina/genética , Elementos de Resposta , Fator de Transcrição STAT3/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
4.
J Biol Chem ; 291(45): 23756-23768, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27650498

RESUMO

Bromodomain and extraterminal (BET) proteins are epigenetic "readers" that recognize acetylated histones and mark areas of the genome for transcription. BRD4, a BET family member protein, has been implicated in a number of types of cancer, and BET protein inhibitors (BETi) are efficacious in many preclinical cancer models. However, the drivers of response to BETi vary depending on tumor type, and little is known regarding the target genes conveying BETi activity in triple-negative breast cancer (TNBC). Here, we show that BETi repress growth of multiple in vitro and in vivo models of TNBC by inducing two terminal responses: apoptosis and senescence. Unlike in other cancers, response to BETi in TNBC is not dependent upon suppression of MYC Instead, both end points are preceded by the appearance of polyploid cells caused by the suppression of Aurora kinases A and B (AURKA/B), which are critical mediators of mitosis. In addition, AURKA/B inhibitors phenocopy the effects of BETi. These results indicate that Aurora kinases play an important role in the growth suppressive activity of BETi in TNBC. Elucidating the mechanism of response to BETi in TNBC should 1) facilitate the prediction of how distinct TNBC tumors will respond to BETi and 2) inform the rational design of drug combination therapies.


Assuntos
Antineoplásicos/uso terapêutico , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase B/antagonistas & inibidores , Mama/efeitos dos fármacos , Proteínas Nucleares/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Mama/metabolismo , Mama/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
5.
Sci Transl Med ; 8(334): 334ra53, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27075627

RESUMO

Amplifications at 9p24 have been identified in breast cancer and other malignancies, but the genes within this locus causally associated with oncogenicity or tumor progression remain unclear. Targeted next-generation sequencing of postchemotherapy triple-negative breast cancers (TNBCs) identified a group of 9p24-amplified tumors, which contained focal amplification of the Janus kinase 2 (JAK2) gene. These patients had markedly inferior recurrence-free and overall survival compared to patients with TNBC without JAK2 amplification. Detection of JAK2/9p24 amplifications was more common in chemotherapy-treated TNBCs than in untreated TNBCs or basal-like cancers, or in other breast cancer subtypes. Similar rates of JAK2 amplification were confirmed in patient-derived TNBC xenografts. In patients for whom longitudinal specimens were available, JAK2 amplification was selected for during neoadjuvant chemotherapy and eventual metastatic spread, suggesting a role in tumorigenicity and chemoresistance, phenotypes often attributed to a cancer stem cell-like cell population. In TNBC cell lines with JAK2 copy gains or amplification, specific inhibition of JAK2 signaling reduced mammosphere formation and cooperated with chemotherapy in reducing tumor growth in vivo. In these cells, inhibition of JAK1-signal transducer and activator of transcription 3 (STAT3) signaling had little effect or, in some cases, counteracted JAK2-specific inhibition. Collectively, these results suggest that JAK2-specific inhibitors are more efficacious than dual JAK1/2 inhibitors against JAK2-amplified TNBCs. Furthermore, JAK2 amplification is a potential biomarker for JAK2 dependence, which, in turn, can be used to select patients for clinical trials with JAK2 inhibitors.


Assuntos
Cromossomos Humanos Par 9/genética , Amplificação de Genes , Loci Gênicos , Janus Quinase 2/genética , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estudos de Coortes , Feminino , Técnicas de Silenciamento de Genes , Humanos , Pessoa de Meia-Idade , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
6.
Breast Cancer Res ; 18(1): 6, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26757880

RESUMO

BACKGROUND: Developing novel strategies against treatment-resistant triple negative breast cancer (TNBC) cells remains a significant challenge. The ErbB family, including epidermal growth factor receptor (EGFR), plays key roles in metastasis, tumorigenesis, cell proliferation, and drug resistance. Recently, these characteristics have been linked to a small subpopulation of cells classified as cancer stem cells (CSC) which are believed to be responsible for tumor initiation and maintenance. Ixabepilone is a new generation microtubule-stabilizing agent, which has been expected to be more efficacious than conventional taxanes. Here we aim to investigate whether the EGFR monoclonal antibody Cetuximab, in combination with Ixabepilone, is more effective in eliminating CSC populations compared to chemotherapy alone in TNBC. METHODS: Representative TNBC cell lines (MDA-MB-231 and SUM159) were used to evaluate breast CSC populations. We used fluorescence-activated cell sorter analysis (CD44(+) and CD24(-/low), or Aldefluor(+)) and a self-renewal assay called mammosphere formation efficiency (MSFE) to measure CSC population size after treatment with Cetuximab, or Cetuximab plus Ixabepilone in vitro. RESULTS: Although there was no significant decrease in cell viability, Cetuximab reduced MSFE and the CSC population in breast cancer cells in vitro and in vivo through inhibition of autophagy. Also, SUM159 and MDA-MB-231 orthotopic tumors demonstrated partial response to Centuximab or Ixabepilone monotherapy; however, the effect of the combination treatment was significant only in SUM159 tumors (p <0.0001), when compared to Ixabepilone alone. CONCLUSIONS: Overall, our findings demonstrate that EGFR-targeted therapy by Cetuximab effectively reduces the CSC population in TNBC tumors. However, combination therapy with Ixabepilone may be effective only in a small subset of TNBCs, warranting further investigation of alternative approaches to target multiple pathways for TNBC treatment.


Assuntos
Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Cetuximab/administração & dosagem , Epotilonas/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Anticorpos Monoclonais Humanizados/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia
7.
Breast Cancer Res ; 17: 25, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25849745

RESUMO

INTRODUCTION: Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer with no effective targeted therapy. Inducible nitric oxide synthase (iNOS) is associated with poor survival in patients with breast cancer by increasing tumor aggressiveness. This work aimed to investigate the potential of iNOS inhibitors as a targeted therapy for TNBC. We hypothesized that inhibition of endogenous iNOS would decrease TNBC aggressiveness by reducing tumor initiation and metastasis through modulation of epithelial-mesenchymal transition (EMT)-inducing factors. METHODS: iNOS protein levels were determined in 83 human TNBC tissues and correlated with clinical outcome. Proliferation, mammosphere-forming efficiency, migration, and EMT transcription factors were assessed in vitro after iNOS inhibition. Endogenous iNOS targeting was evaluated as a potential therapy in TNBC mouse models. RESULTS: High endogenous iNOS expression was associated with worse prognosis in patients with TNBC by gene expression as well as immunohistochemical analysis. Selective iNOS (1400 W) and pan-NOS (L-NMMA and L-NAME) inhibitors diminished cell proliferation, cancer stem cell self-renewal, and cell migration in vitro, together with inhibition of EMT transcription factors (Snail, Slug, Twist1, and Zeb1). Impairment of hypoxia-inducible factor 1α, endoplasmic reticulum stress (IRE1α/XBP1), and the crosstalk between activating transcription factor 3/activating transcription factor 4 and transforming growth factor ß was observed. iNOS inhibition significantly reduced tumor growth, the number of lung metastases, tumor initiation, and self-renewal. CONCLUSIONS: Considering the effectiveness of L-NMMA in decreasing tumor growth and enhancing survival rate in TNBC, we propose a targeted therapeutic clinical trial by re-purposing the pan-NOS inhibitor L-NMMA, which has been extensively investigated for cardiogenic shock as an anti-cancer therapeutic.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Transição Epitelial-Mesenquimal/genética , Feminino , Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Terapia de Alvo Molecular , Invasividade Neoplásica , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Prognóstico , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Curr Drug Targets ; 16(14): 1645-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706254

RESUMO

Breast cancer remains the second leading cause of cancer deaths for women in the U.S. The need for new and alternative strategies to treat this cancer is imperative. Here we show the optimization of our nanochannel delivery system (nDS) for constant and sustained delivery of docetaxel (DTX) for thetreatment of triple negative breast cancer. DTX is a highly hydrophobic drug, making it difficult to reach the therapeutic levels when released in aqueous solutions from our implantable delivery system. To overcome this challenge and test the release of DTX from nDS, we prepared DTX/2-hydroxypropyl ß-cyclodextrin (DTX/HPCD) inclusion complexes in different molar ratios. The 1:10 DTX/HPCD complex achieved 5 times higher solubility than the 1:2 complex and 3 times higher in vitrorelease of DTX than with free DTX. When released in SCID/Beige mice from nanochannel system, the DTX/HPCD complex showed reduced tumor growth, comparable to the standard bolus injections of DTX, indicating that the structural stability and biological activity of DTX were retained in the complex, after its diffusion through the nanochannel system.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Taxoides/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Antineoplásicos/química , Preparações de Ação Retardada , Docetaxel , Feminino , Humanos , Camundongos , Camundongos SCID , Taxoides/química , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Stem Cells ; 32(9): 2309-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24809620

RESUMO

Triple negative breast cancer (TNBC) is known to contain a high percentage of CD44(+) /CD24(-/low) cancer stem cells (CSCs), corresponding with a poor prognosis despite systemic chemotherapy. Chloroquine (CQ), an antimalarial drug, is a lysotropic reagent which inhibits autophagy. CQ was identified as a potential CSC inhibitor through in silico gene expression signature analysis of the CD44(+) /CD24(-/low) CSC population. Autophagy plays a critical role in adaptation to stress conditions in cancer cells, and is related with drug resistance and CSC maintenance. Thus, the objectives of this study were to examine the potential enhanced efficacy arising from addition of CQ to standard chemotherapy (paclitaxel) in TNBC and to identify the mechanism by which CQ eliminates CSCs in TNBCs. Herein, we report that CQ sensitizes TNBC cells to paclitaxel through inhibition of autophagy and reduces the CD44(+) /CD24(-/low) CSC population in both preclinical and clinical settings. Also, we are the first to report a mechanism by which CQ regulates the CSCs in TNBC through inhibition of the Janus-activated kinase 2 (Jak2)-signal transducer and activator of transcription 3 signaling pathway by reducing the expression of Jak2 and DNA methyltransferase 1.


Assuntos
Cloroquina/farmacologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , Janus Quinase 2/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , Feminino , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo
10.
Nature ; 508(7494): 103-107, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24670641

RESUMO

Cancer cells induce a set of adaptive response pathways to survive in the face of stressors due to inadequate vascularization. One such adaptive pathway is the unfolded protein (UPR) or endoplasmic reticulum (ER) stress response mediated in part by the ER-localized transmembrane sensor IRE1 (ref. 2) and its substrate XBP1 (ref. 3). Previous studies report UPR activation in various human tumours, but the role of XBP1 in cancer progression in mammary epithelial cells is largely unknown. Triple-negative breast cancer (TNBC)--a form of breast cancer in which tumour cells do not express the genes for oestrogen receptor, progesterone receptor and HER2 (also called ERBB2 or NEU)--is a highly aggressive malignancy with limited treatment options. Here we report that XBP1 is activated in TNBC and has a pivotal role in the tumorigenicity and progression of this human breast cancer subtype. In breast cancer cell line models, depletion of XBP1 inhibited tumour growth and tumour relapse and reduced the CD44(high)CD24(low) population. Hypoxia-inducing factor 1α (HIF1α) is known to be hyperactivated in TNBCs. Genome-wide mapping of the XBP1 transcriptional regulatory network revealed that XBP1 drives TNBC tumorigenicity by assembling a transcriptional complex with HIF1α that regulates the expression of HIF1α targets via the recruitment of RNA polymerase II. Analysis of independent cohorts of patients with TNBC revealed a specific XBP1 gene expression signature that was highly correlated with HIF1α and hypoxia-driven signatures and that strongly associated with poor prognosis. Our findings reveal a key function for the XBP1 branch of the UPR in TNBC and indicate that targeting this pathway may offer alternative treatment strategies for this aggressive subtype of breast cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Antígeno CD24/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Inativação Gênica , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos , Invasividade Neoplásica , Recidiva Local de Neoplasia , Prognóstico , RNA Polimerase II/metabolismo , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcrição Gênica , Neoplasias de Mama Triplo Negativas/irrigação sanguínea , Neoplasias de Mama Triplo Negativas/genética , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box
11.
Cell Res ; 24(5): 542-59, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24675532

RESUMO

Combinatorial targeted therapies are more effective in treating cancer by blocking by-pass mechanisms or inducing synthetic lethality. However, their clinical application is hampered by resistance and toxicity. To meet this important challenge, we developed and tested a novel concept of biomarker-guided sequential applications of various targeted therapies using ErbB2-overexpressing/PTEN-low, highly aggressive breast cancer as our model. Strikingly, sustained activation of ErbB2 and downstream pathways drives trastuzumab resistance in both PTEN-low/trastuzumab-resistant breast cancers from patients and mammary tumors with intratumoral heterogeneity from genetically-engineered mice. Although lapatinib initially inhibited trastuzumab-resistant mouse tumors, tumors by-passed the inhibition by activating the PI3K/mTOR signaling network as shown by the quantitative protein arrays. Interestingly, activation of the mTOR pathway was also observed in neoadjuvant lapatinib-treated patients manifesting lapatinib resistance. Trastuzumab + lapatinib resistance was effectively overcome by sequential application of a PI3K/mTOR dual kinase inhibitor (BEZ235) with no significant toxicity. However, our p-RTK array analysis demonstrated that BEZ235 treatment led to increased ErbB2 expression and phosphorylation in genetically-engineered mouse tumors and in 3-D, but not 2-D, culture, leading to BEZ235 resistance. Mechanistically, we identified ErbB2 protein stabilization and activation as a novel mechanism of BEZ235 resistance, which was reversed by subsequent treatment with lapatinib + BEZ235 combination. Remarkably, this sequential application of targeted therapies guided by biomarker changes in the tumors rapidly evolving resistance doubled the life-span of mice bearing exceedingly aggressive tumors. This fundamentally novel approach of using targeted therapies in a sequential order can effectively target and reprogram the signaling networks in cancers evolving resistance during treatment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Mama/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Imidazóis/farmacologia , Lapatinib , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Quinolinas/farmacologia , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Trastuzumab , Células Tumorais Cultivadas
12.
Small ; 10(13): 2688-96, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24639392

RESUMO

Hybrid PET/MRI scanners have the potential to provide fundamental molecular, cellular, and anatomic information essential for optimizing therapeutic and surgical interventions. However, their full utilization is currently limited by the lack of truly multi-modal contrast agents capable of exploiting the strengths of each modality. Here, we report on the development of long-circulating positron-emitting magnetic nanoconstructs (PEM) designed to image solid tumors for combined PET/MRI. PEMs are synthesized by a modified nano-precipitation method mixing poly(lactic-co-glycolic acid) (PLGA), lipids, and polyethylene glycol (PEG) chains with 5 nm iron oxide nanoparticles (USPIOs). PEM lipids are coupled with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and subsequently chelated to (64)Cu. PEMs show a diameter of 140 ± 7 nm and a transversal relaxivity r2 of 265.0 ± 10.0 (mM × s)(-1), with a r2/r1 ratio of 123. Using a murine xenograft model bearing human breast cancer cell line (MDA-MB-231), intravenously administered PEMs progressively accumulate in tumors reaching a maximum of 3.5 ± 0.25% ID/g tumor at 20 h post-injection. Correlation of PET and MRI signals revealed non-uniform intratumoral distribution of PEMs with focal areas of accumulation at the tumor periphery. These long-circulating PEMs with high transversal relaxivity and tumor accumulation may allow for detailed interrogation over multiple scales in a clinically relevant setting.


Assuntos
Elétrons , Imageamento por Ressonância Magnética , Magnetismo , Tomografia por Emissão de Pósitrons , Animais , Camundongos , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/patologia
13.
Stem Cell Reports ; 2(1): 78-91, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24511467

RESUMO

Previous studies have suggested that breast cancer stem cells (BCSCs) mediate metastasis, are resistant to radiation and chemotherapy, and contribute to relapse. Although several BCSC markers have been described, it is unclear whether these markers identify the same or independent BCSCs. Here, we show that BCSCs exist in distinct mesenchymal-like (epithelial-mesenchymal transition [EMT]) and epithelial-like (mesenchymal-epithelial transition [MET]) states. Mesenchymal-like BCSCs characterized as CD24(-)CD44(+) are primarily quiescent and localized at the tumor invasive front, whereas epithelial-like BCSCs express aldehyde dehydrogenase (ALDH), are proliferative, and are located more centrally. The gene-expression profiles of mesenchymal-like and epithelial-like BCSCs are remarkably similar across different molecular subtypes of breast cancer, and resemble those of distinct basal and luminal stem cells found in the normal breast. We propose that the plasticity of BCSCs that allows them to transition between EMT- and MET-like states endows these cells with the capacity for tissue invasion, dissemination, and growth at metastatic sites.


Assuntos
Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/citologia , Aldeído Desidrogenase/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Antígeno CD24/metabolismo , Células Epiteliais/citologia , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Células MCF-7 , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Neoplásicas/metabolismo , Transcriptoma
14.
J Pediatr Surg ; 48(11): 2226-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24210190

RESUMO

BACKGROUND/PURPOSE: Chylothorax is a frequent complication in congenital diaphragmatic hernia (CDH) infants and is associated with significant morbidity. The optimal treatment strategy remains unclear. We hypothesize that octreotide decreases chylous effusions in infants with CDH. METHODS: This is a retrospective study of all infants with CDH admitted to our institution from October 2006 to October 2011. RESULTS: Eleven (12%) infants developed a chylothorax. Five infants were managed conservatively with thoracostomy and total parenteral nutrition. Six infants were started on octreotide therapy. None of the infants required surgical intervention to stop the effusion. There was no significant difference in survival to discharge, length of stay, or average daily chest tube output between groups. There appeared to be a temporally associated drop in chest tube output upon initiation of octreotide in two infants; however, the overall rate of decline in chest tube drainage was unchanged. In addition, there were infants in the conservative group who demonstrated a similar drop in daily chest tube output despite the absence of octreotide. CONCLUSIONS: Our data suggest that the majority of chylous effusions in CDH infants resolve with conservative therapy alone.


Assuntos
Quilotórax/tratamento farmacológico , Hérnias Diafragmáticas Congênitas , Octreotida/uso terapêutico , Derrame Pleural/tratamento farmacológico , Tubos Torácicos , Quilotórax/etiologia , Quilotórax/cirurgia , Terapia Combinada , Avaliação de Medicamentos , Hérnia Diafragmática/complicações , Humanos , Lactente , Recém-Nascido , Tempo de Internação/estatística & dados numéricos , Nutrição Parenteral Total , Derrame Pleural/etiologia , Derrame Pleural/cirurgia , Estudos Retrospectivos , Toracostomia
15.
New J Phys ; 15: 55004, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24039540

RESUMO

Heterogeneities in the perfusion of solid tumors prevent optimal delivery of nanotherapeutics. Clinical imaging protocols to obtain patient-specific data have proven difficult to implement. It is challenging to determine which perfusion features hold greater prognostic value and to relate measurements to vessel structure and function. With the advent of systemically administered nanotherapeutics, whose delivery is dependent on overcoming diffusive and convective barriers to transport, such knowledge is increasingly important. We describe a framework for the automated evaluation of vascular perfusion curves measured at the single vessel level. Primary tumor fragments, collected from triple-negative breast cancer patients and grown as xenografts in mice, were injected with fluorescence contrast and monitored using intravital microscopy. The time to arterial peak and venous delay, two features whose probability distributions were measured directly from time-series curves, were analyzed using a Fuzzy C-mean (FCM) supervised classifier in order to rank individual tumors according to their perfusion characteristics. The resulting rankings correlated inversely with experimental nanoparticle accumulation measurements, enabling modeling of nanotherapeutics delivery without requiring any underlying assumptions about tissue structure or function, or heterogeneities contained within. With additional calibration, these methodologies may enable the study of nanotherapeutics delivery strategies in a variety of tumor models.

16.
Breast Cancer Res ; 15(5): R77, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24008095

RESUMO

INTRODUCTION: We hypothesized that cells present in normal tissue that bear cancer stem cell markers may represent a cancer cell of origin or a microenvironment primed for tumor development, and that their presence may correlate with the clinically defined subtypes of breast cancer that show increased tumorigenicity and stem cell features. methods: Normal tissues sampled at least 5 cm from primary tumors (normal adjacent tissue) were obtained from 61 chemotherapy-naive patients with breast cancer treated with mastectomy. Samples were stained simultaneously with immunofluorescence for CD44/CD49f/CD133/2 stem cell markers. We assessed the association between CD44+CD49f+CD133/2+ staining in normal adjacent tissue and breast cancer receptor subtype (defined by the expression of the estrogen (ER), progesterone (PR), or human epidermal growth factor-2 (Her2) receptors). We also examined the correlation between CD44+CD49f+CD133/2+ immunofluorescence and each of two previously published gene signatures, one derived from stem-cell enriched tissue and one from BRCA mutated tissue expected to have defective DNA repair. RESULTS: Patients with triple negative breast cancer (ER­/PR­/HER2­) expressed CD44+CD49f+CD133/2+ in 9 of 9 normal adjacent tissue samples compared with 7 of 52 ER+ and/or Her2+ tumors (P < 0.001). Further, expression of CD44+CD49f+CD133/2+ by normal adjacent tissue correlated positively with a stem cell-derived tumorigenic signature (P <0.001) and inversely with a defective DNA-repair signature (P <0.001). CONCLUSION: Normal cells bearing cancer stem cell markers are associated with the triple negative receptor subtype of breast cancer. This study suggests stem cell staining and gene expression signatures from normal breast tissues represent novel tissue-based risk biomarkers for triple negative breast cancer. Validation of these results in additional studies of normal tissue from cancer-free women could lay the foundation for future targeted triple negative breast cancer prevention strategies.


Assuntos
Reparo do DNA , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Antígeno AC133 , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Superfície , Biomarcadores/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Fatores Epidemiológicos , Feminino , Perfilação da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Integrina alfa6/genética , Integrina alfa6/metabolismo , Glândulas Mamárias Humanas/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade
17.
Cancer Res ; 73(15): 4885-97, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23737486

RESUMO

Breast cancer research is hampered by difficulties in obtaining and studying primary human breast tissue, and by the lack of in vivo preclinical models that reflect patient tumor biology accurately. To overcome these limitations, we propagated a cohort of human breast tumors grown in the epithelium-free mammary fat pad of severe combined immunodeficient (SCID)/Beige and nonobese diabetic (NOD)/SCID/IL-2γ-receptor null (NSG) mice under a series of transplant conditions. Both models yielded stably transplantable xenografts at comparably high rates (∼21% and ∼19%, respectively). Of the conditions tested, xenograft take rate was highest in the presence of a low-dose estradiol pellet. Overall, 32 stably transplantable xenograft lines were established, representing 25 unique patients. Most tumors yielding xenografts were "triple-negative" [estrogen receptor (ER)-progesterone receptor (PR)-HER2+; n = 19]. However, we established lines from 3 ER-PR-HER2+ tumors, one ER+PR-HER2-, one ER+PR+HER2-, and one "triple-positive" (ER+PR+HER2+) tumor. Serially passaged xenografts show biologic consistency with the tumor of origin, are phenotypically stable across multiple transplant generations at the histologic, transcriptomic, proteomic, and genomic levels, and show comparable treatment responses as those observed clinically. Xenografts representing 12 patients, including 2 ER+ lines, showed metastasis to the mouse lung. These models thus serve as a renewable, quality-controlled tissue resource for preclinical studies investigating treatment response and metastasis.


Assuntos
Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fenótipo
18.
Biomaterials ; 34(21): 5402-10, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23611451

RESUMO

The in vivo performance of nanoparticles is affected by their size, shape and surface properties. Fabrication methods based on emulsification and nano-precipitation cannot control these features precisely and independently over multiple scales. Herein, discoidal polymeric nanoconstructs (DPNs) with a diameter of 1000 nm and a height of 500 nm are demonstrated via a modified hydrogel-template strategy. The DPNs are obtained by mixing in one synthesis step the constituent polymers - poly(lactic acid-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) dimethacrylate - and the payload with magneto-optical properties - 5 nm ultra-small super-paramagnetic iron oxide nanoparticles (SPIOs) and Rhodamine B dye (RhB). The DPN geometrical features are characterized by multiple microscopy techniques. The release of the Rhodamine B dye is pH dependent and increases under acidic conditions by the enhanced hydrolysis of the polymeric matrix. Each DPN is loaded with ~100 fg of iron and can be efficiently dragged by static and external magnetic fields. Moreover, the USPIO confinement within the DPN porous structure is responsible for a significant enhancement in MRI relaxivity (r2 ~ 500 (mMs)(-1)), up to ~5 times larger than commercially available systems. These nanoconstructs suggest a general strategy to engineer theranostic systems for anti-angiogenic treatment and vascular imaging.


Assuntos
Diagnóstico por Imagem/métodos , Ácido Láctico/química , Fenômenos Magnéticos , Metacrilatos/química , Nanotecnologia/métodos , Neoplasias/diagnóstico , Fenômenos Ópticos , Polietilenoglicóis/química , Ácido Poliglicólico/química , Animais , Morte Celular/efeitos dos fármacos , Células HeLa , Humanos , Camundongos , Camundongos SCID , Microscopia de Fluorescência , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Rodaminas/metabolismo
19.
Clin Cancer Res ; 19(6): 1512-24, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23340294

RESUMO

PURPOSE: Accumulating evidence supports the existence of breast cancer stem cells (BCSC), which are characterized by their capacity to self-renew and divide indefinitely and resistance to conventional therapies. The Notch pathway is important for stem cell renewal and is a potential target for BCSC-directed therapy. EXPERIMENTAL DESIGN: Using human breast tumorgraft studies, we evaluated the impact of gamma secretase inhibitors (GSI) on the BCSC population and the efficacy of combining GSI with docetaxel treatment. The mouse experimental therapy paralleled a concurrent clinical trial in patients with advanced breast cancer, designed to determine the maximum-tolerated dose of the GSI, MK-0752, administered sequentially with docetaxel, and to evaluate BCSC markers in serial tumor biopsies. RESULTS: Treatment with GSI reduced BCSCs in MC1 and BCM-2147 tumorgrafts by inhibition of the Notch pathway. GSI enhanced the efficacy of docetaxel in preclinical studies. In the clinical trial, 30 patients with advanced breast cancer were treated with escalating doses of MK-0752 plus docetaxel. Clinically, meaningful doses of both drugs were possible with manageable toxicity and preliminary evidence of efficacy. A decrease in CD44(+)/CD24(-), ALDH(+), and mammosphere-forming efficiency were observed in tumors of patients undergoing serial biopsies. CONCLUSIONS: These preclinical data show that pharmacologic inhibition of the Notch pathway can reduce BCSCs in breast tumorgraft models. The clinical trial shows feasibility of combination GSI and chemotherapy, and together these results encourage further study of Notch pathway inhibitors in combination with chemotherapy in breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Derivados de Benzeno/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Propionatos/administração & dosagem , Sulfonas/administração & dosagem , Taxoides/administração & dosagem , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Derivados de Benzeno/efeitos adversos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Docetaxel , Feminino , Humanos , Dose Máxima Tolerável , Camundongos , Estadiamento de Neoplasias , Propionatos/efeitos adversos , Receptores Notch/metabolismo , Transdução de Sinais , Sulfonas/efeitos adversos , Taxoides/efeitos adversos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Breast Cancer Res ; 15(1): 201, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23339383

RESUMO

Despite improved detection and reduction of breast cancer-related deaths over the recent decade, breast cancer remains the second leading cause of cancer death for women in the US, with 39,510 women expected to succumb to metastatic disease in 2012 alone (American Cancer Society, Cancer Facts &Figures 2012. Atlanta: American Cancer Society; 2012). Continued efforts in classification of breast cancers based on gene expression profiling and genomic sequencing have revealed an underlying complexity and molecular heterogeneity within the disease that continues to challenge therapeutic interventions. To successfully identify and translate new treatment regimens to the clinic, it is imperative that our preclinical models recapitulate this complexity and heterogeneity. In this review article, we discuss the recent advances in development and classification of patient-derived human breast tumor xenograft models that have the potential to facilitate the next phase of drug discovery for personalized cancer therapy based on the unique driver signaling pathways in breast tumor subtypes.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Medicina de Precisão , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias da Mama/patologia , Feminino , Humanos , Patologia Molecular , Pacientes , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...