Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Minerva Surg ; 79(2): 166-182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38088753

RESUMO

Tissue loss, irrespective of etiology, often requires extensive reconstruction. In many instances, the need exceeds what current treatments and technologies modern medicine can offer. Tissue engineering has made immense strides within the past few decades due to advances in biologics, biomaterials, and manufacturing. The convergence of these three domains has created limitless potential for future surgical care. Unfortunately, there still exists a disconnect on how to best implant these 'replacement parts' and care for the patient. It is therefore vital to develop paradigms for the integration of advanced surgical and tissue engineering technologies. This paper explores the convergence between tissue engineering and reconstructive surgery. We will describe the clinical problem of tissue loss, discuss currently available solutions, address limitations, and propose processes for integrating surgery and tissue engineering, thereby ushering in the era of regenerative surgery.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Humanos , Materiais Biocompatíveis/uso terapêutico , Alicerces Teciduais
2.
Microcirculation ; 31(1): e12835, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947797

RESUMO

OBJECTIVE: The success of engineered tissues continues to be limited by time to vascularization and perfusion. Recently, we described a simple microsurgical approach, termed micropuncture (MP), which could be used to rapidly vascularize an adjacently placed scaffold from the recipient macrovasculature. Here we studied the long-term persistence of the MP-induced microvasculature. METHODS: Segmental 60 µm diameter MPs were created in the recipient rat femoral artery and vein followed by coverage with a simple Type 1 collagen scaffold. The recipient vasculature and scaffold were then wrapped en bloc with a silicone sheet to isolate intrinsic vascularization. Scaffolds were harvested at 28 days post-implantation for detailed analysis, including using a novel artificial intelligence (AI) approach. RESULTS: MP scaffolds demonstrated a sustained increase of vascular density compared to internal non-MP control scaffolds (p < 0.05) secondary to increases in both vessel diameters (p < 0.05) and branch counts (p < 0.05). MP scaffolds also demonstrated statistically significant increases in red blood cell (RBC) perfused lumens. CONCLUSIONS: This study further highlights that the intrinsic MP-induced vasculature continues to persist long-term. Its combination of rapid and stable angiogenesis represents a novel surgical platform for engineered scaffold and graft perfusion.


Assuntos
Inteligência Artificial , Alicerces Teciduais , Animais , Ratos , Punções , Silicones , Engenharia Tecidual , Angiogênese
3.
PLoS One ; 16(11): e0259998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34784403

RESUMO

One of the major risk factors for head and neck squamous cell carcinoma (HNSCC) is tobacco smoke exposure, but the mechanisms that can account for disease development remain to be fully defined. Utilizing our HNSCC mouse model, we analyzed oral squamous cell carcinomas (OSCC) induced by the active metabolite of a common smoke constituent, dibenzo[a,l]pyrene diol-epoxide (DBPDE). Analyzing protein expression by either immunofluorescence or immunohistochemistry, we identified biologic processes that are dysregulated in premalignant and invasive cancer lesions induced by DBPDE. Interestingly, p120ctn expression is downregulated in both stages of the disease. In addition to decreased p120ctn expression, there was also increased proliferation (as measured by Ki67), inflammation (as measured by NFkB (p65) expression), neovascularization (as measured by CD31) and recruitment of Ly6G-positive immune cells as well as strong EGFR expression. We also examined the effect of the chemopreventive agent black raspberry (BRB) on p120ctn and EGFR protein expression in DBPDE treated mice. p120ctn, but not EGFR, protein expression increased in mice treated with BRB. Our results suggest that modulation of p120ctn may, in part, account for the mechanism by which BRB inhibits DBPDE induced OSCC in mice.


Assuntos
Cateninas/metabolismo , Compostos de Epóxi/efeitos adversos , Neoplasias Bucais/dietoterapia , Compostos Fitoquímicos/administração & dosagem , Rubus/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/dietoterapia , Animais , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Compostos de Epóxi/química , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/metabolismo , Compostos Fitoquímicos/farmacologia , Pirenos/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/induzido quimicamente , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , delta Catenina
4.
PLoS One ; 15(10): e0241299, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33112928

RESUMO

Epidermal growth factor receptor (EGFR) plays a vital role in cell division and survival signaling pathways. EGFR is activated in nearly every cancer type, and its high expression in tumors is correlated with poor patient outcome. Altogether, EGFR is a prime candidate as a therapeutic target. While targeted EGFR therapy is initially effective in 75% of patients, a majority of patients relapse within the first year due to poorly understood mechanisms of resistance. p120-catenin (p120ctn) has recently been implicated as a biomarker for EGFR therapy. In previous studies, we demonstrated that p120ctn is a tumor suppressor and its loss is capable of inducing cancer. Furthermore, p120ctn down-regulation synergizes with EGFR overexpression to cause a highly invasive cell phenotype. The purpose of this present study was to investigate whether p120ctn down-regulation induced EGFR therapeutic resistance. Using human esophageal keratinocytes, we have found that EGFR-targeting compounds are toxic to cells overexpressing EGFR. Interestingly, these therapies do not cause toxicity in cells with EGFR overexpression and decreased p120ctn expression. These data suggest that decreased p120ctn causes resistance to EGFR therapy. We believe these findings are of utmost importance, as there is an unmet need to discover mechanisms of EGFR resistance.


Assuntos
Cateninas/deficiência , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Terapia de Alvo Molecular , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Apoptose/efeitos dos fármacos , Cateninas/metabolismo , Linhagem Celular Tumoral , Cetuximab/farmacologia , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Esôfago/patologia , Gefitinibe/farmacologia , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Resultado do Tratamento , delta Catenina
5.
PLoS One ; 15(8): e0237786, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32822376

RESUMO

Plasmodium falciparum malaria killed 451,000 people in 2017. Merozoites, the stage of the parasite that invades RBCs, are a logical target for vaccine development. Treatment with the protease inhibitor E64 followed by filtration through a 1.2 µm filter is being used to purify merozoites for immunologic assays. However, there have been no studies to determine the effect of these treatments on the susceptibility of merozoites to complement or antibodies. To address this gap, we purified merozoites with or without E64 followed by filtration through either a 1.2 or 2.7 µm filter, or no filtration. Merozoites were then incubated in either 10% fresh or heat-inactivated serum followed by surface staining and flow cytometry with monoclonal antibodies against the complement effector molecules C3b or C5b9. To determine the effect of anti-merozoite antibodies, we incubated merozoites with MAb5.2, a mouse monoclonal antibody that targets the merozoite surface protein 1. We used an amine-reactive fluorescent dye to measure membrane integrity. Treatment with E64 resulted in an insignificant increase in the proportion of merozoites that were C3b positive but in a significant increase in the proportion that were C5b9 positive. Filtration increased the proportion of merozoites that were either C3b or C5b9-positive. The combination of filtration and E64 treatment resulted in marked deposition of C3b and C5b9. MAb5.2 induced greater complement deposition than serum alone or an IgG2b isotype control. The combination of E64 treatment, filtration, and MAb5.2 resulted in very rapid and significant deposition of C5b9. Filtration through the 1.2 µm filter selected a population of merozoites with greater membrane integrity, but their integrity deteriorated rapidly upon exposure to serum. We conclude that E64 treatment and filtration increase the susceptibility of merozoites to complement and antibody. Filtered or E64-treated merozoites are not suitable for immunologic studies that address the efficacy of antibodies in vitro.


Assuntos
Merozoítos/efeitos dos fármacos , Merozoítos/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Inibidores de Proteases/farmacologia , Animais , Anticorpos Antiprotozoários/imunologia , Ativação do Complemento/efeitos dos fármacos , Filtração , Citometria de Fluxo , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Merozoítos/imunologia , Camundongos , Plasmodium falciparum/imunologia
6.
EBioMedicine ; 9: 207-216, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27333049

RESUMO

Plasmodium falciparum malaria is a deadly pathogen. The invasion of red blood cells (RBCs) by merozoites is a target for vaccine development. Although anti-merozoite antibodies can block invasion in vitro, there is no efficacy in vivo. To explain this discrepancy we hypothesized that complement activation could enhance RBC invasion by binding to the complement receptor 1 (CR1). Here we show that a monoclonal antibody directed against the merozoite and human polyclonal IgG from merozoite vaccine recipients enhanced RBC invasion in a complement-dependent manner and that soluble CR1 inhibited this enhancement. Sialic acid-independent strains, that presumably are able to bind to CR1 via a native ligand, showed less complement-dependent enhancement of RBC invasion than sialic acid-dependent strains that do not utilize native CR1 ligands. Confocal fluorescent microscopy revealed that complement-dependent invasion resulted in aggregation of CR1 at the RBC surface in contact with the merozoite. Finally, total anti-P. berghei IgG enhanced parasite growth and C3 deficiency decreased parasite growth in mice. These results demonstrate, contrary to current views, that complement activation in conjunction with antibodies can paradoxically aid parasites invade RBCs and should be considered in future design and testing of merozoite vaccines.


Assuntos
Anticorpos Monoclonais/imunologia , Imunoglobulina G/imunologia , Plasmodium falciparum/patogenicidade , Receptores de Complemento/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Eritrócitos/citologia , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Citometria de Fluxo , Humanos , Malária/parasitologia , Merozoítos/efeitos dos fármacos , Merozoítos/imunologia , Merozoítos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Parasitemia/parasitologia , Parasitemia/patologia , Parasitemia/veterinária , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Vacinas Protozoárias/imunologia , Agregação de Receptores , Receptores de Complemento/química
7.
Int J Parasitol ; 45(12): 797-808, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26296689

RESUMO

Plasmodium falciparum infects approximately 500million individuals each year. A small but significant number of infections lead to complications such as cerebral malaria. Cerebral malaria is associated with myelin damage and neurological deficits in survivors, and iron status is thought to impact the outcome of infection. We evaluated whether a mouse model of experimental cerebral malaria with Plasmodium berghei ANKA strain was altered by dietary iron deficiency or genetic iron overload (H67D HFE). We found that H67D mice had increased survival over H67H (wild type) mice. Moreover, a specifically designed formulation diet increased survival regardless of whether the diet was iron deficient or iron adequate. To determine potential mechanisms underlying demyelination in experimental cerebral malaria, we measured Semaphorin4A (Sema4A) protein levels in the brain because we found it is cytotoxic to oligodendrocytes. Sema4A was increased in wild type mice that developed experimental cerebral malaria while consuming standard rodent chow, consistent with a decrease in myelin basic protein, an indicator of myelin integrity. The brains of iron deficient and H67D mice had lower levels of Sema4A. Myelin basic protein was decreased in brains of mice fed the iron deficient diet as has been previously reported. We also examined erythropoietin, which is under consideration for treatment of cerebral malaria, and IL-6, which is known to increase during infection. We found that plasma erythropoietin was elevated and IL-6 was low in H67D mice and in the mice fed the formulation diets. These data reveal a paradigm-shifting concept that maintaining iron status may not increase the mortality associated with malaria and provide a dietary strategy for further examination. Moreover, the data provide clues for exploring the mechanism to limit the co-morbidity associated with experimental cerebral malaria that appears to include decreased Sema4A in brain as well as elevated erythropoietin and lower IL-6 in plasma.


Assuntos
Dieta/métodos , Genótipo , Antígenos de Histocompatibilidade Classe I/genética , Ferro/metabolismo , Malária Cerebral/patologia , Proteínas de Membrana/genética , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Proteína da Hemocromatose , Malária Cerebral/parasitologia , Camundongos Endogâmicos C57BL , Plasmodium berghei/crescimento & desenvolvimento , Semaforinas/análise , Análise de Sobrevida
8.
Infect Immun ; 80(9): 2997-3007, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22689817

RESUMO

Lack of an adequate animal model of Plasmodium falciparum severe malarial anemia (SMA) has hampered the understanding of this highly lethal condition. We developed a model of SMA by infecting C57BL/6 mice with P. chabaudi followed after recovery by P. berghei infection. P. chabaudi/P. berghei-infected mice had an initial 9- to 10-day phase of relatively low parasitemia and severe anemia, followed by a second phase of hyperparasitemia, more profound anemia, reticulocytosis, and death 14 to 21 days after infection. P. chabaudi/P. berghei-infected animals had more intense splenic hematopoiesis, higher interleukin-10 (IL-10)/tumor necrosis factor alpha and IL-12/gamma interferon (IFN-γ) ratios, and higher antibody levels against P. berghei and P. chabaudi antigens than P. berghei-infected or P. chabaudi-recovered animals. Early treatment with chloroquine or artesunate did not prevent the anemia, suggesting that the bulk of red cell destruction was not due to the parasite. Red cells from P. chabaudi/P. berghei-infected animals had increased surface IgG and C3 by flow cytometry. However, C3(-/-) mice still developed anemia. Tracking of red cells labeled ex vivo and in vivo and analysis of frozen tissue sections by immunofluorescence microscopy showed that red cells from P. chabaudi/P. berghei-infected animals were removed at an accelerated rate in the liver by erythrophagocytosis. This model is practical and reproducible, and its similarities with P. falciparum SMA in humans makes it an appealing system with which to study the pathogenesis of this condition and explore potential immunomodulatory interventions.


Assuntos
Anemia/patologia , Modelos Animais de Doenças , Malária/complicações , Malária/patologia , Plasmodium berghei/patogenicidade , Plasmodium chabaudi/patogenicidade , Anemia/etiologia , Animais , Humanos , Fígado/imunologia , Fígado/patologia , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Parasitemia/patologia , Fagocitose , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...