Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMJ Open Sci ; 6(1): e100219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360370

RESUMO

Systematic review and meta-analysis are a gift to the modern researcher, delivering a crystallised understanding of the existing research data in any given space. This can include whether candidate drugs are likely to work or not and which are better than others, whether our models of disease have predictive value and how this might be improved and also how these all interact with disease pathophysiology. Grappling with the literature needed for such analyses is becoming increasingly difficult as the number of publications grows. However, narrowing the focus of a review to reduce workload runs the risk of diminishing the generalisability of conclusions drawn from such increasingly specific analyses. Moreover, at the same time as we gain greater insight into our topic, we also discover more about the flaws that undermine much scientific research. Systematic review and meta-analysis have also shown that the quality of much preclinical research is inadequate. Systematic review has helped reveal the extent of selection bias, performance bias, detection bias, attrition bias and low statistical power, raising questions about the validity of many preclinical research studies. This is perhaps the greatest virtue of systematic review and meta-analysis, the knowledge generated ultimately helps shed light on the limitations of existing research practice, and in doing so, helps bring reform and rigour to research across the sciences. In this commentary, we explore the lessons that we have identified through the lens of preclinical systematic review and meta-analysis.

2.
Physiol Behav ; 232: 113347, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529685

RESUMO

Central fatigue is a condition associated with impairment of the central nervous system often leading to the manifestation of a range of debilitating symptoms. Fatigue can be a consequence of systemic inflammation following an infection. Administration of lipopolysaccharide (LPS) and polyriboinosinic:polyribocytidlic (poly I:C) to animals can induce systemic inflammation by mimicking a bacterial or viral infection respectively and therefore have been used as models of fatigue. We evaluated a range of phenotypic behaviors exhibited in the LPS and poly I:C animal models to assess whether they adequately replicate fatigue symptomology in humans. In addition to standard observation- and intervention-based behavioral assessments, we used powerful in-cage monitoring technology to quantify rodent behavior without external interference. LPS and poly I:C treated Sprague Dawley rats displayed 'sickness behaviors' of elevated temperature, weight loss and reduced activity in the open field test and with in-cage monitoring within 24 h post-treatment, but only LPS-treated rats displayed these behaviors beyond these acute timepoints. Once sickness behavior diminished, LPS-treated rats exhibited an increase in reward-seeking and motivation behaviors. Overall, these results suggest that the LPS animal model produces an extensive and sustained fatigue-like phenotype, whereas the poly I:C model only produced acute effects. Our results suggest that the LPS animal model is a more suitable candidate for further studies on central fatigue-like behavior.


Assuntos
Lipopolissacarídeos , Poli I-C , Animais , Comportamento Animal , Modelos Animais de Doenças , Fadiga/induzido quimicamente , Comportamento de Doença , Lipopolissacarídeos/toxicidade , Poli I-C/toxicidade , Ratos , Ratos Sprague-Dawley
3.
Med Teach ; 43(11): 1261-1266, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33290122

RESUMO

The COVID-19 pandemic has forced health educators to adapt quickly to teaching and supporting students online. Social media platforms - of which Facebook is presently the most popular worldwide-has demonstrated its utility in facilitating online learning and fostering student support. In order for educators to get the most out of the platform, they should consider adopting a systematic and evidence-based approach. This article draws upon current literature and the authors' experiences to offer practical tips for health educators wanting to use Facebook as a learning platform and support tool for their students. We offer twelve tips, organized into prescriptive steps for creating and managing a Facebook group, and suggestions for utilizing Facebook's features to foster student learning, collaboration, communication, and socialization.


Assuntos
COVID-19 , Mídias Sociais , Humanos , Aprendizagem , Pandemias , SARS-CoV-2
4.
Semin Thromb Hemost ; 46(5): 592-605, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31858516

RESUMO

Stroke is a leading cause of death and disability worldwide. The classification of stroke subtypes is difficult but critical for the prediction of clinical course and patient management, and limited treatment options are available. There is an urgent need for improvements in both diagnosis and therapy. Strokes have rapidly evolving phases of damage involving unique compartments of the brain, which imposes severe limitations for current diagnostic and treatment procedures. The rapid development of nanotechnology in other areas of modern medicine has ignited a widespread interest in its potential for the field of stroke. An important feature of nanoparticles is the relative ease in which their structures and surface chemistries can be modified for specific and potentially multiple, simultaneous purposes. Nanoparticles can be synthesized to carry and deliver therapeutics to specific cellular or subcellular compartments; they can be engineered to provide enhanced contrast for imaging based on the detection of changes in the blood flow; or possess ligand-specific chemistries which can facilitate diagnosis and monitor the treatment response. More specifically for a stroke, nanoparticles can be engineered to release their payload in response to the distinct extracellular processes occurring around the clot and in the ischemic penumbra, as well as aid in the detection of pathological hallmarks present at various stages of stroke progression. These capacities allow targeted release of disease-modifying agents in the affected brain tissue, increasing treatment efficacy, and limiting unwanted side effects. While nanospheres, liposomes, and mesoporous nanostructures all emerge as future prospects for stroke treatment and diagnosis, much of this potential is yet to be clinically realized. This review outlines aspects of nanotechnology identified as having potential to revolutionize the field of stroke.


Assuntos
Nanotecnologia/métodos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Humanos
5.
J Chem Neuroanat ; 76(Pt A): 19-27, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27151423

RESUMO

Peripheral neuropathies (PNs) are injuries or diseases of the nerves which arise from varied aetiology, including metabolic disease, trauma and drug toxicity. The clinical presentation depends on the type of neuropathy, and may include the loss of motor, sensory and autonomic functions, or development of debilitating neuropathic pain distal to the injury site. It can be challenging to identify the aetiology of PNs, as the clinical syndromes are often indistinct. However, the mechanisms that underlie pathological changes in peripheral neuropathy are fundamentally different, depending on the trigger. This review focuses on the axonopathy observed in two frequently encountered forms of peripheral neuropathy, diabetic neuropathy and chemotherapy-induced neuropathy. A key manifestation of axonopathy in PN is the degeneration of terminal arbors of peripheral nerves, resulting in a loss of epidermal nerve fibres and inappropriate termination of nerve endings. Many symptoms of PN arise from aberrant termination of nerve endings, and the underlying axonopathy may be non-reversible, as nerve regeneration after injury and disease is often poor, absent, or aberrant. Directed guidance of terminal arbors back into the epidermis is therefore a suggested approach to treat peripheral neuropathy. This review will outline potential strategies to enhance and guide axonal regeneration and reinnervation in the skin. Using diabetic neuropathy and chemotherapy-induced neuropathy as specific examples, this review examines the setbacks encountered with the translation of growth factors into therapeutics for human neuropathy, and suggests a number of approaches for topical drug delivery.


Assuntos
Axônios/patologia , Regeneração Nervosa , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/terapia , Animais , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/terapia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Doenças do Sistema Nervoso Periférico/induzido quimicamente
6.
Stem Cells Int ; 2016: 2108495, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26949399

RESUMO

The central nervous system (CNS) is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL) receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions.

7.
J Biol Chem ; 291(3): 1092-102, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26598525

RESUMO

The low-density lipoprotein receptor-related protein receptors 1 and 2 (LRP1 and LRP2) are emerging as important cell signaling mediators in modulating neuronal growth and repair. We examined whether LRP1 and LRP2 are able to mediate a specific aspect of neuronal growth: axon guidance. We sought to identify LRP1 and LRP2 ligands that could induce axonal chemoattraction, which might have therapeutic potential. Using embryonic sensory neurons (rat dorsal root ganglia) in a growth cone turning assay, we tested a range of LRP1 and LRP2 ligands for the ability to guide growth cone navigation. Three ligands were chemorepulsive: α-2-macroglobulin, tissue plasminogen activator, and metallothionein III. Conversely, only one LRP ligand, metallothionein II, was found to be chemoattractive. Chemoattraction toward a gradient of metallothionein II was calcium-dependent, required the expression of both LRP1 and LRP2, and likely involves further co-receptors such as the tropomyosin-related kinase A (TrkA) receptor. The potential for LRP-mediated chemoattraction to mediate axonal regeneration was examined in vivo in a model of chemical denervation in adult rats. In these in vivo studies, metallothionein II was shown to enhance epidermal nerve fiber regeneration so that it was complete within 7 days compared with 14 days in saline-treated animals. Our data demonstrate that both LRP1 and LRP2 are necessary for metallothionein II-mediated chemotactic signal transduction and that they may form part of a signaling complex. Furthermore, the data suggest that LRP-mediated chemoattraction represents a novel, non-classical signaling system that has therapeutic potential as a disease-modifying agent for the injured peripheral nervous system.


Assuntos
Axônios/fisiologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/agonistas , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/agonistas , Regeneração Nervosa , Proteínas do Tecido Nervoso/agonistas , Neurogênese , Nervos Periféricos/fisiologia , Animais , Axônios/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Epiderme/inervação , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/metabolismo , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Metalotioneína/farmacologia , Metalotioneína/uso terapêutico , Regeneração Nervosa/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Nervos Periféricos/citologia , Nervos Periféricos/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/fisiopatologia , Interferência de RNA , Coelhos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA