Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Med ; 23(9): 1086-1094, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28825717

RESUMO

Recent large-scale genetic sequencing efforts have identified rare coding variants in genes in the triglyceride-rich lipoprotein (TRL) clearance pathway that are protective against coronary heart disease (CHD), independently of LDL cholesterol (LDL-C) levels. Insight into the mechanisms of protection of these variants may facilitate the development of new therapies for lowering TRL levels. The gene APOC3 encodes apoC-III, a critical inhibitor of triglyceride (TG) lipolysis and remnant TRL clearance. Here we report a detailed interrogation of the mechanism of TRL lowering by the APOC3 Ala43Thr (A43T) variant, the only missense (rather than protein-truncating) variant in APOC3 reported to be TG lowering and protective against CHD. We found that both human APOC3 A43T heterozygotes and mice expressing human APOC3 A43T display markedly reduced circulating apoC-III levels. In mice, this reduction is due to impaired binding of A43T apoC-III to lipoproteins and accelerated renal catabolism of free apoC-III. Moreover, the reduced content of apoC-III in TRLs resulted in accelerated clearance of circulating TRLs. On the basis of this protective mechanism, we developed a monoclonal antibody targeting lipoprotein-bound human apoC-III that promotes circulating apoC-III clearance in mice expressing human APOC3 and enhances TRL catabolism in vivo. These data reveal the molecular mechanism by which a missense variant in APOC3 causes reduced circulating TG levels and, hence, protects from CHD. This protective mechanism has the potential to be exploited as a new therapeutic approach to reduce apoC-III levels and circulating TRL burden.


Assuntos
Apolipoproteína C-III/genética , Lipoproteínas/metabolismo , Mutação de Sentido Incorreto , Triglicerídeos/metabolismo , Idoso , Animais , Anticorpos Monoclonais/farmacologia , Apolipoproteína C-III/efeitos dos fármacos , Apolipoproteínas B/metabolismo , HDL-Colesterol/metabolismo , Cromatografia Líquida , Simulação por Computador , Doença das Coronárias/genética , Estudos Transversais , Feminino , Humanos , Immunoblotting , Metabolismo dos Lipídeos/genética , Lipoproteínas/efeitos dos fármacos , Lipoproteínas VLDL/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Fatores de Proteção , Espectrometria de Massas em Tandem
2.
J Med Chem ; 59(17): 8068-81, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27490827

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK) is a protein kinase involved in maintaining energy homeostasis within cells. On the basis of human genetic association data, AMPK activators were pursued for the treatment of diabetic nephropathy. Identification of an indazole amide high throughput screening (HTS) hit followed by truncation to its minimal pharmacophore provided an indazole acid lead compound. Optimization of the core and aryl appendage improved oral absorption and culminated in the identification of indole acid, PF-06409577 (7). Compound 7 was advanced to first-in-human trials for the treatment of diabetic nephropathy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Ativadores de Enzimas/química , Indóis/química , Administração Oral , Adsorção , Animais , Cristalografia por Raios X , Cães , Ativadores de Enzimas/síntese química , Ativadores de Enzimas/farmacocinética , Ativadores de Enzimas/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Indazóis/síntese química , Indazóis/química , Indazóis/farmacologia , Indóis/síntese química , Indóis/farmacocinética , Indóis/farmacologia , Injeções Intravenosas , Macaca fascicularis , Masculino , Modelos Moleculares , Conformação Proteica , Ratos
3.
Biochem J ; 473(5): 581-92, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26635351

RESUMO

AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that serves as a pleotropic regulator of whole body energy homoeostasis. AMPK exists as a heterotrimeric complex, composed of a catalytic subunit (α) and two regulatory subunits (ß and γ), each present as multiple isoforms. In the present study, we compared the enzyme kinetics and allosteric modulation of six recombinant AMPK isoforms, α1ß1γ1, α1ß2γ1, α1ß2γ3, α2ß1γ1, α2ß2γ1 and α2ß2γ3 using known activators, A769662 and AMP. The α1-containing complexes exhibited higher specific activities and lower Km values for a widely used peptide substrate (SAMS) compared with α2-complexes. Surface plasmon resonance (SPR)-based direct binding measurements revealed biphasic binding modes with two distinct equilibrium binding constants for AMP, ADP and ATP across all isoforms tested. The α2-complexes were ∼25-fold more sensitive than α1-complexes to dephosphorylation of a critical threonine on their activation loop (pThr(172/174)). However, α2-complexes were more readily activated by AMP than α1-complexes. Compared with ß1-containing heterotrimers, ß2-containing AMPK isoforms are less sensitive to activation by A769662, a synthetic activator. These data demonstrate that ligand induced activation of AMPK isoforms may vary significantly based on their AMPK subunit composition. Our studies provide insights for the design of isoform-selective AMPK activators for the treatment of metabolic diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/química , Monofosfato de Adenosina/química , Regulação Alostérica , Compostos de Bifenilo , Ativação Enzimática , Ativadores de Enzimas/química , Ensaios Enzimáticos , Humanos , Isoenzimas/química , Cinética , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Pironas/química , Proteínas Recombinantes/química , Tiofenos/química
4.
Structure ; 22(8): 1161-1172, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25066137

RESUMO

AMP-activated protein kinase (AMPK) is a principal metabolic regulator affecting growth and response to cellular stress. Comprised of catalytic and regulatory subunits, each present in multiple forms, AMPK is best described as a family of related enzymes. In recent years, AMPK has emerged as a desirable target for modulation of numerous diseases, yet clinical therapies remain elusive. Challenges result, in part, from an incomplete understanding of the structure and function of full-length heterotrimeric complexes. In this work, we provide the full-length structure of the widely expressed α1ß1γ1 isoform of mammalian AMPK, along with detailed kinetic and biophysical characterization. We characterize binding of the broadly studied synthetic activator A769662 and its analogs. Our studies follow on the heels of the recent disclosure of the α2ß1γ1 structure and provide insight into the distinct molecular mechanisms of AMPK regulation by AMP and A769662.


Assuntos
Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/fisiologia , Ativação Enzimática/fisiologia , Modelos Moleculares , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/metabolismo , Sítio Alostérico/genética , Compostos de Bifenilo , Sistemas de Liberação de Medicamentos , Humanos , Cinética , Ligantes , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Pironas/metabolismo , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Tiofenos/metabolismo
5.
Biochem J ; 441(3): 881-7, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22044397

RESUMO

GK (glucokinase) is an enzyme central to glucose metabolism that displays positive co-operativity to substrate glucose. Small-molecule GKAs (GK activators) modulate GK catalytic activity and glucose affinity and are currently being pursued as a treatment for Type 2 diabetes. GK progress curves monitoring product formation are linear up to 1 mM glucose, but biphasic at 5 mM, with the transition from the lower initial velocity to the higher steady-state velocity being described by the rate constant kact. In the presence of a liver-specific GKA (compound A), progress curves at 1 mM glucose are similar to those at 5 mM, reflecting activation of GK by compound A. We show that GKRP (GK regulatory protein) is a slow tight-binding inhibitor of GK. Analysis of progress curves indicate that this inhibition is time dependent, with apparent initial and final Ki values being 113 and 12.8 nM respectively. When GK is pre-incubated with glucose and compound A, the inhibition observed by GKRP is time dependent, but independent of GKRP concentration, reflecting the GKA-controlled transition between closed and open GK conformations. These data are supported by cell-based imaging data from primary rat hepatocytes. This work characterizes the modulation of GK by a novel GKA that may enable the design of new and improved GKAs.


Assuntos
Proteínas de Transporte/metabolismo , Glucoquinase/metabolismo , Glucose/farmacologia , Regulação Alostérica , Animais , Proteínas de Transporte/antagonistas & inibidores , Células Cultivadas , Agonismo de Drogas , Ativação Enzimática/efeitos dos fármacos , Glucoquinase/antagonistas & inibidores , Glucoquinase/química , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Cinética , Modelos Biológicos , Conformação Proteica , Ratos , Bibliotecas de Moléculas Pequenas
6.
J Med Chem ; 55(3): 1318-33, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22196621

RESUMO

Glucokinase is a key regulator of glucose homeostasis, and small molecule allosteric activators of this enzyme represent a promising opportunity for the treatment of type 2 diabetes. Systemically acting glucokinase activators (liver and pancreas) have been reported to be efficacious but in many cases present hypoglycaemia risk due to activation of the enzyme at low glucose levels in the pancreas, leading to inappropriately excessive insulin secretion. It was therefore postulated that a liver selective activator may offer effective glycemic control with reduced hypoglycemia risk. Herein, we report structure-activity studies on a carboxylic acid containing series of glucokinase activators with preferential activity in hepatocytes versus pancreatic ß-cells. These activators were designed to have low passive permeability thereby minimizing distribution into extrahepatic tissues; concurrently, they were also optimized as substrates for active liver uptake via members of the organic anion transporting polypeptide (OATP) family. These studies lead to the identification of 19 as a potent glucokinase activator with a greater than 50-fold liver-to-pancreas ratio of tissue distribution in rodent and non-rodent species. In preclinical diabetic animals, 19 was found to robustly lower fasting and postprandial glucose with no hypoglycemia, leading to its selection as a clinical development candidate for treating type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Ativadores de Enzimas/síntese química , Glucoquinase/metabolismo , Hepatócitos/metabolismo , Hipoglicemiantes/síntese química , Imidazóis/síntese química , Ácidos Nicotínicos/síntese química , Sítio Alostérico , Animais , Glicemia/metabolismo , Cães , Ativadores de Enzimas/farmacocinética , Ativadores de Enzimas/farmacologia , Haplorrinos , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Imidazóis/farmacocinética , Imidazóis/farmacologia , Técnicas In Vitro , Células Secretoras de Insulina/metabolismo , Masculino , Modelos Moleculares , Ácidos Nicotínicos/farmacocinética , Ácidos Nicotínicos/farmacologia , Transportadores de Ânions Orgânicos/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Estereoisomerismo , Relação Estrutura-Atividade , Distribuição Tecidual
7.
J Biol Chem ; 286(48): 41510-41519, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21953464

RESUMO

Inhibition of acetyl-CoA carboxylases (ACCs), a crucial enzyme for fatty acid metabolism, has been shown to promote fatty acid oxidation and reduce body fat in animal models. Therefore, ACCs are attractive targets for structure-based inhibitor design, particularly the carboxyltransferase (CT) domain, which is the primary site for inhibitor interaction. We have cloned, expressed, and purified the CT domain of human ACC2 using baculovirus-mediated insect cell expression system. However, attempts to crystallize the human ACC2 CT domain have not been successful in our hands. Hence, we have been using the available crystal structure of yeast CT domain to design human ACC inhibitors. Unfortunately, as the selectivity of the lead series has increased against the full-length human enzyme, the potency against the yeast enzyme has decreased significantly. This loss of potency against the yeast enzyme correlated with a complete lack of binding of the human-specific compounds to crystals of the yeast CT domain. Here, we address this problem by converting nine key active site residues of the yeast CT domain to the corresponding human residues. The resulting humanized yeast ACC-CT (yCT-H9) protein exhibits biochemical and biophysical properties closer to the human CT domain and binding to human specific compounds. We report high resolution crystal structures of yCT-H9 complexed with inhibitors that show a preference for the human CT domain. These structures offer insights that explain the species selectivity of ACC inhibitors and may guide future drug design programs.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/química , Domínio Catalítico , Inibidores Enzimáticos/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química , Acetil-CoA Carboxilase/genética , Animais , Linhagem Celular , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie , Spodoptera , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
8.
Protein Expr Purif ; 73(2): 189-97, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20451617

RESUMO

AMP-activated protein kinase (AMPK) is an energy-sensing serine/threonine protein kinase that plays a central role in whole-body energy homeostasis. AMPK is a heterotrimeric enzyme with a catalytic (alpha) subunit and two regulatory (beta and gamma) subunits. The muscle-specific AMPK heterotrimeric complex (alpha2beta2gamma3) is involved in glucose and fat metabolism in skeletal muscle and therefore has emerged as an attractive target for drug development for diabetes and metabolic syndrome. To date, expression of recombinant full-length human AMPK alpha2beta2gamma3 has not been reported. Here we describe the expression, purification and biochemical characterization of functional full-length AMPK alpha2beta2gamma3 heterotrimeric complex using an Escherichia coli expression system. All three subunits of AMPK alpha2beta2gamma3 were transcribed as a single tricistronic transcript driven by the T7 RNA polymerase promoter, allowing spontaneous formation of the heterotrimeric complex in the bacterial cytosol. The self-assembled trimeric complex was purified from the cell lysate by nickel-ion chromatography using the hexahistidine tag fused exclusively at the N-terminus of the alpha 2 domain. The un-assembled beta 2 and gamma 3 domains were removed by extensive washing of the column. Further purification of the heterotrimer was performed using size exclusion chromatography. The final yield of the recombinant AMPK alpha2beta2gamma3 complex was 1.1mg/L culture in shaker flasks. The E. coli expressed enzyme was catalytically inactive after purification, but was activated in vitro by upstream kinases such as CaMKKbeta and LKB1. The kinase activity of activated AMPK alpha2beta2gamma3 complex was significantly enhanced by AMP (an allosteric activator) but not by thienopyridone A-769662, a known small molecule activator of AMPK. Mass spectrometric characterization of recombinant AMPK alpha2beta2gamma3 showed significant heterogeneity before and after activation that could potentially hamper crystallographic studies of this complex.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Escherichia coli/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/metabolismo , Compostos de Bifenilo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/fisiologia , Domínio Catalítico , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Escherichia coli/genética , Homeostase , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pironas/farmacologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Tiofenos/farmacologia
9.
J Biomol Screen ; 12(5): 628-34, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17478478

RESUMO

A high-throughput mass spectrometry assay to measure the catalytic activity of phosphatidylserine decarboxylase (PISD) is described. PISD converts phosphatidylserine to phosphatidylethanolamine during lipid synthesis. Traditional methods of measuring PISD activity are low throughput and unsuitable for the high-throughput screening of large compound libraries. The high-throughput mass spectrometry assay directly measures phosphatidylserine and phosphatidylethanolamine using the RapidFiretrade mark platform at a rate of 1 sample every 7.5 s. The assay is robust, with an average Z' value of 0.79 from a screen of 9920 compounds. Of 60 compounds selected for confirmation, 54 are active in dose-response studies. The application of high-throughput mass spectrometry permitted a high-quality screen to be performed for an otherwise intractable target.


Assuntos
Carboxiliases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Espectrometria de Massas/métodos , Carboxiliases/análise , Carboxiliases/genética , Linhagem Celular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Estabilidade Enzimática , Congelamento , Humanos , Rim/citologia , Cinética , Plasmídeos , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Robótica , Análise de Sequência de DNA , Transfecção
10.
J Biomol Screen ; 12(4): 473-80, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17478485

RESUMO

Mass spectrometry is an emerging format for label-free high-throughput screening. The main limitation of mass spectrometry is throughput, due to the requirement to purify samples prior to ionization. Here the authors compare an automated high-throughput mass spectrometry (HTMS) system (RapidFire) with the scintillation proximity assay (SPA). The cancer therapy target AKT1/PKBalpha was screened against a focused library of kinase inhibitors and IC50 values determined for all compounds that exhibit > 50% inhibition. A selection of additional compounds that exhibited

Assuntos
Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/isolamento & purificação , Contagem de Cintilação , Espectrometria de Massas por Ionização por Electrospray , Sequência de Aminoácidos , Reações Falso-Negativas , Reações Falso-Positivas , Dados de Sequência Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/química
11.
Anal Biochem ; 363(2): 246-54, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17316538

RESUMO

An enhanced method to measure the concentration of individual naturally occurring free amino acids in solution is described. This relatively simple but robust method combines two previously reported procedures: the use of scintillation proximity assay (SPA) technology to measure aminoacyl-tRNA synthetase (aaRS) activity and the use of aaRS activity to measure amino acid concentration using the enzymatic isotope dilution technique. The format described is called an aaRS competitive scintillation proximity assay (cSPA). This cSPA takes advantage of competition between a fixed concentration of radiolabeled amino acid and an unknown concentration of the same nonradiolabeled amino acid for its cognate tRNA catalyzed by the aaRS specific for that amino acid. Under equilibrium conditions, in the case of limiting tRNA, the rate of the enzyme-catalyzed reaction relative to substrate concentration becomes irrelevant and the enzymatic isotopic dilution technique becomes the simple isotopic dilution technique. Due to the exquisite specificity of the reaction, a crude mixture of tRNAs and aaRSs can be used to detect the concentration of a particular amino acid without interference from noncognate amino acids. When used to monitor aminopeptidase M activity, this assay produced similar results in time course and inhibition experiments as compared with a traditional fluorescent assay. High-throughput compatibility was demonstrated by screening 12,000 compounds against aminopeptidase M in 384-well microtiter plates with Z factors ranging from 0.53 to 0.70. This competitive assay can be used as a general method to detect amino acids at concentrations less than 100 nM and to monitor enzyme activity in biological samples, and it is amenable to high-throughput screening.


Assuntos
Aminoácidos/análise , Aminoacil-tRNA Sintetases/metabolismo , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Aminopeptidases/metabolismo , Técnicas de Diluição do Indicador , Metionil Aminopeptidases , RNA de Transferência/metabolismo , Reprodutibilidade dos Testes , Contagem de Cintilação/métodos
12.
Anal Biochem ; 358(2): 266-72, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16962554

RESUMO

A new method to measure the activity of lipid-metabolizing enzymes is described. Subsequent to an enzymatic reaction, a two-phase system (organic/aqueous) is established by the addition of a phase partition scintillation fluid (PPSF). The PPSF serves as a scintillation fluid, a phase partition agent, and a carrier/separator of an organic-soluble radiolabeled reaction substrate or product. Applying an empirically derived set of conditions typically enhances the separation of substrate from product whereby one species is effectively solubilized in the PPSF. In situ partitioning of the radionuclide-containing organic/lipid phase from the aqueous phase occurs within individual wells of 96-well or 384-well density PPSF-resistant microtiter plates without the requirement for multiple organic solvent extractions and aspirations, making this method applicable to high-throughput screening. The utility of this method for both kinetic characterization and high-throughput screening is demonstrated with acetyl-CoA carboxylase and fatty acid synthase.


Assuntos
Acetato-CoA Ligase/metabolismo , Ácido Graxo Sintases/metabolismo , Metabolismo dos Lipídeos , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Cinética , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...