Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139538

RESUMO

In the Internet of Things (IoT) era, the surge in Machine-Type Devices (MTDs) has introduced Massive IoT (MIoT), opening new horizons in the world of connected devices. However, such proliferation presents challenges, especially in storing and analyzing massive, heterogeneous data streams in real time. In order to manage Massive IoT data streams, we utilize analytical database software such as Apache Druid version 28.0.0 that excels in real-time data processing. Our approach relies on a publish/subscribe mechanism, where device-generated data are relayed to a dedicated broker, effectively functioning as a separate server. This broker enables any application to subscribe to the dataset, promoting a dynamic and responsive data ecosystem. At the core of our data transmission infrastructure lies Apache Kafka version 3.6.1, renowned for its exceptional data flow management performance. Kafka efficiently bridges the gap between MIoT sensors and brokers, enabling parallel clusters of brokers that lead to more scalability. In our pursuit of uninterrupted connectivity, we incorporate a fail-safe mechanism with two Software-Defined Radios (SDR) called Nutaq PicoLTE Release 1.5 within our model. This strategic redundancy enhances data transmission availability, safeguarding against connectivity disruptions. Furthermore, to enhance the data repository security, we utilize blockchain technology, specifically Hyperledger Fabric, known for its high-performance attributes, ensuring data integrity, immutability, and security. Our latency results demonstrate that our platform effectively reduces latency for 100,000 devices, qualifying as an MIoT, to less than 25 milliseconds. Furthermore, our findings on blockchain performance underscore our model as a secure platform, achieving over 800 Transactions Per Second in a dataset comprising 14,000 transactions, thereby demonstrating its high efficiency.

2.
Sensors (Basel) ; 23(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836957

RESUMO

This article introduces a novel approach to human activity recognition (HAR) by presenting a sensor that utilizes a real-time embedded neural network. The sensor incorporates a low-cost microcontroller and an inertial measurement unit (IMU), which is affixed to the subject's chest to capture their movements. Through the implementation of a convolutional neural network (CNN) on the microcontroller, the sensor is capable of detecting and predicting the wearer's activities in real-time, eliminating the need for external processing devices. The article provides a comprehensive description of the sensor and the methodology employed to achieve real-time prediction of subject behaviors. Experimental results demonstrate the accuracy and high inference performance of the proposed solution for real-time embedded activity recognition.


Assuntos
Atividades Humanas , Redes Neurais de Computação , Humanos , Movimento , Reconhecimento Psicológico
3.
Sensors (Basel) ; 23(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37514686

RESUMO

This paper proposes a novel Blockchain-based indoor navigation system that combines a foot-mounted dual-inertial measurement unit (IMU) setup and a zero-velocity update (ZUPT) algorithm for secure and accurate indoor navigation in GNSS-denied environments. The system estimates the user's position and orientation by fusing the data from two IMUs using an extended Kalman filter (EKF). The ZUPT algorithm is employed to detect and correct the error introduced by sensor drift during zero-velocity intervals, thus enhancing the accuracy of the position estimate. The proposed Low SWaP-C blockchain-based decentralized architecture ensures the security and trustworthiness of the system by providing an immutable and distributed ledger to store and verify the sensor data and navigation solutions. The proposed system is suitable for various indoor navigation applications, including autonomous vehicles, robots, and human tracking. The experimental results provide clear and compelling evidence of the effectiveness of the proposed system in ensuring the integrity, privacy, and security of navigation data through the utilization of blockchain technology. The system exhibits an impressive ability to process more than 680 transactions per second within the Hyperledger-Fabric framework. Furthermore, it demonstrates exceptional accuracy and robustness, with a mean RMSE error of 1.2 m and a peak RMSE of 3.2 during a 20 min test. By eliminating the reliance on external signals or infrastructure, the system offers an innovative, practical, and secure solution for indoor navigation in environments where GNSS signals are unavailable.

4.
Sensors (Basel) ; 22(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35590829

RESUMO

Numerous devices in distributed wireless sensor arrays require a high-accuracy timing reference. Although the GPS-disciplined oscillators have been developed for decades, the hardware design still has performance limitations. In this context, we present the hardware implementation for a GPS-disciplined oscillator with an automatic adaptive drift correction algorithm, which is implemented in a low-cost, high-speed field-programmable gate array (FPGA) device. The system design and the hardware implementation are presented to demonstrate the advantages of the proposed oscillator. To verify this oscillator in real-time applications, we tested the device in multiple environments and compared it to state-of-the-art designs. The experimental results showed that our proposed device has a low cost and high performance. This device can achieve less than 80 ns and 356 ns in 1PPS signal drift in the indoor environment test and the outdoor environment test, respectively, after 24 h of working without a GPS signal.

5.
Sensors (Basel) ; 22(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35271018

RESUMO

The Unmanned Aerial Vehicle (UAV) is one of the most remarkable inventions of the last 100 years. Much research has been invested in the development of this flying robot. The landing system is one of the more challenging aspects of this system's development. Artificial Intelligence (AI) has become the preferred technique for landing system development, including reinforcement learning. However, current research is more focused is on system development based on image processing and advanced geometry. A novel calibration based on our previous research had been used to ameliorate the accuracy of the AprilTag pose estimation. With the help of advanced geometry from camera and range sensor data, a process known as Inverse Homography Range Camera Fusion (IHRCF), a pose estimation that outperforms our previous work, is now possible. The range sensor used here is a Time of Flight (ToF) sensor, but the algorithm can be used with any range sensor. First, images are captured by the image acquisition device, a monocular camera. Next, the corners of the landing landmark are detected through AprilTag detection algorithms (ATDA). The pixel correspondence between the image and the range sensor is then calculated via the calibration data. In the succeeding phase, the planar homography between the real-world locations of sensor data and their obtained pixel coordinates is calculated. In the next phase, the pixel coordinates of the AprilTag-detected four corners are transformed by inverse planar homography from pixel coordinates to world coordinates in the camera frame. Finally, knowing the world frame corner points of the AprilTag, rigid body transformation can be used to create the pose data. A CoppeliaSim simulation environment was used to evaluate the IHRCF algorithm, and the test was implemented in real-time Software-in-the-Loop (SIL). The IHRCF algorithm outperformed the AprilTag-only detection approach significantly in both translational and rotational terms. To conclude, the conventional landmark detection algorithm can be ameliorated by incorporating sensor fusion for cameras with lower radial distortion.

6.
Sensors (Basel) ; 21(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067380

RESUMO

The advancement of indoor Inertial Navigation Systems (INS) based on the low-cost Inertial Measurement Units (IMU) has been long reviewed in the field of pedestrian localization. There are various sources of error in these systems which lead to unstable and unreliable positioning results, especially in long term performances. These inaccuracies are usually caused by imperfect system modeling, inappropriate sensor fusion models, heading drift, biases of IMUs, and calibration methods. This article addresses the issues surrounding unreliability of the low-cost Micro-Electro-Mechanical System (MEMS)-based pedestrian INS. We designed a novel multi-sensor fusion method based on a Time of Flight (ToF) distance sensor and dual chest- and foot-mounted IMUs, aided by an online calibration technique. An Extended Kalman Filter (EKF) is accounted for estimating the attitude, position, and velocity errors, as well as estimation of IMU biases. A fusion architecture is derived to provide a consistent velocity measurement by operative contribution of ToF distance sensor and foot mounted IMU. In this method, the measurements of the ToF distance sensor are used for the time-steps in which the Zero Velocity Update (ZUPT) measurements are not active. In parallel, the chest mounted IMU is accounted for attitude estimation of the pedestrian's chest. As well, by designing a novel corridor detection filter, the heading drift is restricted in each straightway. Compared to the common INS method, developed system proves promising and resilient results in two-dimensional corridor spaces for durations of up to 11 min. Finally, the results of our experiments showed the position RMS error of less than 3 m and final-point error of less than 5 m.

7.
Sensors (Basel) ; 21(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669466

RESUMO

Attitude and heading reference system (AHRS) is the term used to describe a rigid body's angular orientation in three-dimensional space. This paper describes an AHRS determination and control system developed for navigation systems by integrating gyroscopes, accelerometers, and magnetometers signals from low-cost MEMS-based sensors in a complementary adaptive Kalman filter. AHRS estimation based on the iterative Kalman filtering process is required to be initialized first. A new method for AHRS initialization is proposed to improve the accuracy of the initial attitude estimates. Attitude estimates derived from the initialization and iterative adaptive filtering processes are compared with the orientation obtained from a high-end reference system. The improvement in the accuracy of the initial orientation as significant as 45% is obtained from the proposed method as compared with other selected techniques. Additionally, the computational process is reduced by 96%.

8.
Sensors (Basel) ; 20(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105627

RESUMO

A two-step fifth and a multi-step 5+3r order iterative method are derived, r≥1 for finding the solution of system of nonlinear equations. The new two-step fifth order method requires two functions, two first order derivatives, and the multi-step methods needs a additional function per step. The performance of this method has been tested with finding solutions to several test problems then applied to solving pseudorange nonlinear equations on Global Navigation Satellite Signal (GNSS). To solve the problem, at least four satellite's measurements are needed to locate the user position and receiver time offset. In this work, a number of satellites from 4 to 8 are considered such that the number of equations is more than the number of unknown variables to calculate the user position. Moreover, the Geometrical Dilution of Precision (GDOP) values are computed based on the satellite selection algorithm (fuzzy logic method) which could be able to bring the best suitable combination of satellites. We have restricted the number of satellites to 4 to 6 for solving the pseudorange equations to get better GDOP value even after increasing the number of satellites beyond six also yields a 0.4075 GDOP value. Actually, the conventional methods utilized in the position calculation module of the GNSS receiver typically converge with six iterations for finding the user position whereas the proposed method takes only three iterations which really decreases the computation time which provide quicker position calculation. A practical study was done to evaluate the computation efficiency index (CE) and efficiency index (IE) of the new model. From the simulation outcomes, it has been noted that the new method is more efficient and converges 33% faster than the conventional iterative methods with good accuracy of 92%.

9.
Sensors (Basel) ; 20(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081355

RESUMO

A Multi-Constellation Software-Defined Receiver (MC-SDR) is designed and implemented to extract the Doppler measurements of Low Earth Orbit (LEO) satellite's downlink signals, such as Orbcomm, Iridium-Next, Globalstar, Starlink, OneWeb, SpaceX, etc. The Doppler positioning methods, as one of the main localization algorithms, need a highly accurate receiver design to track the Doppler as a measurement for Extended Kalman Filter (EKF)-based positioning. In this paper, the designed receiver has been used to acquire and track the Doppler shifts of two different kinds of LEO constellations. The extracted Doppler shifts of one Iridium-Next satellite as a burst-based simplex downlink signal and two Orbcomm satellites as continuous signals are considered. Also, with having the Two-Line Element (TLE) for each satellite, the position, and orbital elements of each satellite are known. Finally, the accuracy of the designed receiver is validated using an EKF-based stationary positioning algorithm with an adaptive measurement matrix. Satellite detection and Doppler tracking results are analyzed for each satellite. The positioning results for a stationary receiver showed an accuracy of about 132 m, which means 72% accuracy advancements compared to single constellation positioning.

10.
Sensors (Basel) ; 20(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708229

RESUMO

Accurate attitude and heading reference system (AHRS) play an essential role in navigation applications and human body tracking systems. Using low-cost microelectromechanical system (MEMS) inertial sensors and having accurate orientation estimation, simultaneously, needs optimum orientation methods and algorithms. The error of attitude estimation may lead to imprecise navigation and motion capture results. This paper proposed a novel intermittent calibration technique for MEMS-based AHRS using error prediction and compensation filter. The method, inspired from the recognition of gyroscope's error and by a proportional integral (PI) controller, can be regulated to increase the accuracy of the prediction. The experimentation of this study for the AHRS algorithm, aided by the proposed prediction filter, was tested with real low-cost MEMS sensors consists of accelerometer, gyroscope, and magnetometer. Eventually, the error compensation was performed by post-processing the measurements of static and dynamic tests. The experimental results present about 35% accuracy improvement in attitude estimation and demonstrate the explicit performance of proposed method.


Assuntos
Sistemas Microeletromecânicos , Algoritmos , Calibragem , Humanos , Orientação , Orientação Espacial
11.
Sensors (Basel) ; 18(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380758

RESUMO

The Collective Detection (CD) technique is a promising approach to meet the requirements for signal acquisition in GNSS-harsh environments. The CD approach has been proposed because of its potential to operate as both a direct positioning method and a high-sensitivity acquisition method. This paper is dedicated to the development of a new CD architecture for processing satellite signals in challenging environments. It proposes the best signal acquisition method used according to the reception conditions of the different receivers that can assist the user in difficulty. Knowing that the CD approach is beneficial in the case where the maximum of satellite signals can be combined, the proposed approach consists in choosing the best receiver(s) from several connected receivers to serve as a reference station, as smart cooperative navigation concept. New metrics of the CD with optimal weighting of visible satellites are exploited. Analysis of optimization method in order to use better satellites according to some defined parameters (elevation, C / N 0 , and GDOP) were carried out. Real GPS L1 C/A signals are exploited to analyze the efficiency of the proposed approach. A comparison of the results through the accumulation of some good satellites among all visible satellites have shown the effectiveness of this method.

12.
Sensors (Basel) ; 18(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142964

RESUMO

Nowadays, civil Global Navigation Satellite System (GNSS) signals are available in both L1 and L5 bands. A receiver does not need to acquire independently the signals in both bands coming from a same satellite, since their carrier Doppler and code delay are closely related. Therefore, the question of which one to acquire first rises naturally. Although the common thought would tell the L1 band signals which are narrowband, an accurate comparison has never been done, and the decision is not as easy as it seems. Indeed, L5 band signals have several advantages such as stronger power, lower carrier Doppler, or a pilot channel, unlike the Global Positioning System (GPS) L1 C/A signal. The goal of this paper is therefore to compare the acquisition of L1 and L5 bands signals (GPS L1 C/A and L5, Galileo E1 and E5a/b) to determine which one is more complex and by which factor, in terms of processing time and memory, considering hardware receivers and the parallel code search. The results show that overall the L5 band signals are more complex to acquire, but it depends strongly on the conditions. The E5 signal is always more complex to acquire than E1, while the L5 signal can have a complexity close to the L1 C/A in some cases. Moreover, precise assistance providing accurate Doppler could significantly reduce the L5 complexity below the L1 complexity.

13.
Sensors (Basel) ; 18(6)2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880776

RESUMO

Using multiple IMUs allows both their distribution along vehicle structures and a reliance on integration methods, which is not possible with a single IMU. This paper addresses the issue of relying on three IMUs instead of only one of a higher quality in the context of a satellite launcher. The impact of the IMU positions was tested by comparing collocated IMUs against IMUs installed in the head of each launcher stage. For multi-IMU configurations, three integration methods were tested: all IMUs fused in a single INS, multiple INSs fused in a stacked filter, and multiple INSs fused in a stacked filter with geometrical constraints. All navigation solutions were aided by a three-axis attitude reference sensor and were tested with and without a GPS receiver. The results show that distributing IMUs along the launcher structure does not improve navigation performances compared to having them collocated. The fusion of multiple IMUs in one INS provides equivalent results as one IMU. However, fusing multiple INSs greatly reduces estimation errors. Performances are further improved with the addition of geometrical constraints. During long GPS outages, relative velocity and position constraints should not be exploited, as they may lead to filter divergence.

14.
Sensors (Basel) ; 16(6)2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27314351

RESUMO

Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network.

15.
Sensors (Basel) ; 16(5)2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27144569

RESUMO

This paper presents a universal GNSS receiver channel capable of tracking any civil GNSS signal. This fundamentally differs from dedicated channels, each customized for a given signal. A mobile device could integrate fewer universal channels to harvest all available signals. This would allow securing signal availability, while minimizing power consumption and chip size, thus maximizing battery lifetime. In fact, the universal channel allows sequential acquisition and tracking of any chipping rate, carrier frequency, FDMA channel, modulation, or constellation, and is totally configurable (any integration time, any discriminator, etc.). It can switch from one signal to another in 1.07 ms, making it possible for the receiver to rapidly adapt to its sensed environment. All this would consume 3.5 mW/channel in an ASIC implementation, i.e., with a slight overhead compared to the original GPS L1 C/A dedicated channel from which it was derived. After extensive surveys on GNSS signals and tracking channels, this paper details the implementation strategies that led to the proposed universal channel architecture. Validation is achieved using GNSS signals issued from different constellations, frequency bands, modulations and spreading code schemes. A discussion on acquisition approaches and conclusive remarks follow, which open up a new signal selection challenge, rather than satellite selection.

16.
Sensors (Basel) ; 15(10): 27060-86, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26512672

RESUMO

Target positioning systems based on MEMS gyros and laser rangefinders (LRs) have extensive prospects due to their advantages of low cost, small size and easy realization. The target positioning accuracy is mainly determined by the LR's attitude derived by the gyros. However, the attitude error is large due to the inherent noises from isolated MEMS gyros. In this paper, both accelerometer/magnetometer and LR attitude aiding systems are introduced to aid MEMS gyros. A no-reset Federated Kalman Filter (FKF) is employed, which consists of two local Kalman Filters (KF) and a Master Filter (MF). The local KFs are designed by using the Direction Cosine Matrix (DCM)-based dynamic equations and the measurements from the two aiding systems. The KFs can estimate the attitude simultaneously to limit the attitude errors resulting from the gyros. Then, the MF fuses the redundant attitude estimates to yield globally optimal estimates. Simulation and experimental results demonstrate that the FKF-based system can improve the target positioning accuracy effectively and allow for good fault-tolerant capability.

17.
Sensors (Basel) ; 15(5): 11189-207, 2015 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-25985163

RESUMO

This paper presents modification of Radial Basis Function Artificial Neural Network (RBF ANN)-based temperature compensation models for Interferometric Fiber Optical Gyroscopes (IFOGs). Based on the mathematical expression of IFOG output, three temperature relevant terms are extracted, which include: (1) temperature of fiber loops; (2) temperature variation of fiber loops; (3) temperature product term of fiber loops. Then, the input-modified RBF ANN-based temperature compensation scheme is established, in which temperature relevant terms are transferred to train the RBF ANN. Experimental temperature tests are conducted and sufficient data are collected and post-processed to form the novel RBF ANN. Finally, we apply the modified RBF ANN based on temperature compensation model in two IFOGs with temperature compensation capabilities. The experimental results show the proposed temperature compensation model could efficiently reduce the influence of environment temperature on the output of IFOG, and exhibit a better temperature compensation performance than conventional scheme without proposed improvements.

18.
Sensors (Basel) ; 14(8): 13661-78, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25076218

RESUMO

In order to improve the accuracy and reliability of micro-electro mechanical systems (MEMS) navigation systems, an orthogonal rotation method-based nine-gyro redundant MEMS configuration is presented. By analyzing the accuracy and reliability characteristics of an inertial navigation system (INS), criteria for redundant configuration design are introduced. Then the orthogonal rotation configuration is formed through a two-rotation of a set of orthogonal inertial sensors around a space vector. A feasible installation method is given for the real engineering realization of this proposed configuration. The performances of the novel configuration and another six configurations are comprehensively compared and analyzed. Simulation and experimentation are also conducted, and the results show that the orthogonal rotation configuration has the best reliability, accuracy and fault detection and isolation (FDI) performance when the number of gyros is nine.


Assuntos
Sistemas de Informação Geográfica/instrumentação , Sistemas Microeletromecânicos/instrumentação , Algoritmos , Engenharia/instrumentação , Desenho de Equipamento/instrumentação , Reprodutibilidade dos Testes , Rotação , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...