Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 9: 607677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33665184

RESUMO

In 2020 the world was hit by the COVID-19 pandemic putting entire governments and civil societies in crisis mode. Around the globe unprecedented shortages of equipment and qualified personnel were reported in hospitals and diagnostic laboratories. When a crisis is global, supply chains are strained worldwide and external help may not be readily available. In Switzerland, as part of the efforts of the Swiss National COVID-19 Science Task Force, we developed a tailor-made web-based tool where needs and offers for critical laboratory equipment and expertise can be brought together, coordinated, prioritized, and validated. This Academic Resources for COVID-19 (ARC) Platform presents the specialized needs of diagnostic laboratories to academic research groups at universities, allowing the sourcing of said needs from unconventional supply channels, while keeping the entities tasked with coordination of the crisis response in control of each part of the process. An instance of the ARC Platform is operated in Switzerland (arc.epfl.ch) catering to the diagnostic efforts in Switzerland and sourcing from the Swiss academic sector. The underlying technology has been released as open source so that others can adopt the customizable web-platform for need/supply match-making in their own relief efforts, during the COVID-19 pandemic or any future disaster.


Assuntos
COVID-19/prevenção & controle , Almoxarifado Central Hospitalar/organização & administração , Equipamentos e Provisões/provisão & distribuição , Internet , Pandemias/prevenção & controle , Equipamento de Proteção Individual/provisão & distribuição , Humanos , SARS-CoV-2 , Suíça
2.
Harmful Algae ; 77: 93-107, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30005805

RESUMO

In order to better understand the relationships among current Nostocales cyanobacterial blooms, eight genomes were sequenced from cultured isolates or from environmental metagenomes of recent planktonic Nostocales blooms. Phylogenomic analysis of publicly available sequences placed the new genomes among a group of 15 genomes from four continents in a distinct ADA clade (Anabaena/Dolichospermum/Aphanizomenon) within the Nostocales. This clade contains four species-level groups, two of which include members with both Anabaena-like and Aphanizomenon flos-aquae-like morphology. The genomes contain many repetitive genetic elements and a sizable pangenome, in which ABC-type transporters are highly represented. Alongside common core genes for photosynthesis, the differentiation of N2-fixing heterocysts, and the uptake and incorporation of the major nutrients P, N and S, we identified several gene pathways in the pangenome that may contribute to niche partitioning. Genes for problematic secondary metabolites-cyanotoxins and taste-and-odor compounds-were sporadically present, as were other polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) gene clusters. By contrast, genes predicted to encode the ribosomally generated bacteriocin peptides were found in all genomes.


Assuntos
Cianobactérias/classificação , Genoma Bacteriano , Proteínas de Bactérias/análise , Cianobactérias/genética , Proliferação Nociva de Algas , Filogenia
3.
Front Microbiol ; 9: 1152, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29937754

RESUMO

Optofluidic single-cell genome amplification was used to obtain genome sequences from sub-micron cells collected from the euphotic and mesopelagic zones of the northwestern Sargasso Sea. Plankton cells were visually selected and manually sorted with an optical trap, yielding 20 partial genome sequences representing seven bacterial phyla. Two organisms, E01-9C-26 (Gammaproteobacteria), represented by four single cell genomes, and Opi.OSU.00C, an uncharacterized Verrucomicrobia, were the first of their types retrieved by single cell genome sequencing and were studied in detail. Metagenomic data showed that E01-9C-26 is found throughout the dark ocean, while Opi.OSU.00C was observed to bloom transiently in the nutrient-depleted euphotic zone of the late spring and early summer. The E01-9C-26 genomes had an estimated size of 4.76-5.05 Mbps, and contained "O" and "W"-type monooxygenase genes related to methane and ammonium monooxygenases that were previously reported from ocean metagenomes. Metabolic reconstruction indicated E01-9C-26 are likely versatile methylotrophs capable of scavenging C1 compounds, methylated compounds, reduced sulfur compounds, and a wide range of amines, including D-amino acids. The genome sequences identified E01-9C-26 as a source of "O" and "W"-type monooxygenase genes related to methane and ammonium monooxygenases that were previously reported from ocean metagenomes, but are of unknown function. In contrast, Opi.OSU.00C genomes encode genes for catabolizing carbohydrate compounds normally associated with eukaryotic phytoplankton. This exploration of optofluidics showed that it was effective for retrieving diverse single-cell bacterioplankton genomes and has potential advantages in microbiology applications that require working with small sample volumes or targeting cells by their morphology.

4.
BMC Genomics ; 17: 457, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296936

RESUMO

BACKGROUND: Very few closed genomes of the cyanobacteria that commonly produce toxic blooms in lakes and reservoirs are available, limiting our understanding of the properties of these organisms. A new anatoxin-a-producing member of the Nostocaceae, Anabaena sp. WA102, was isolated from a freshwater lake in Washington State, USA, in 2013 and maintained in non-axenic culture. RESULTS: The Anabaena sp. WA102 5.7 Mbp genome assembly has been closed with long-read, single-molecule sequencing and separately a draft genome assembly has been produced with short-read sequencing technology. The closed and draft genome assemblies are compared, showing a correlation between long repeats in the genome and the many gaps in the short-read assembly. Anabaena sp. WA102 encodes anatoxin-a biosynthetic genes, as does its close relative Anabaena sp. AL93 (also introduced in this study). These strains are distinguished by differences in the genes for light-harvesting phycobilins, with Anabaena sp. AL93 possessing a phycoerythrocyanin operon. Biologically relevant structural variants in the Anabaena sp. WA102 genome were detected only by long-read sequencing: a tandem triplication of the anaBCD promoter region in the anatoxin-a synthase gene cluster (not triplicated in Anabaena sp. AL93) and a 5-kbp deletion variant present in two-thirds of the population. The genome has a large number of mobile elements (160). Strikingly, there was no synteny with the genome of its nearest fully assembled relative, Anabaena sp. 90. CONCLUSION: Structural and functional genome analyses indicate that Anabaena sp. WA102 has a flexible genome. Genome closure, which can be readily achieved with long-read sequencing, reveals large scale (e.g., gene order) and local structural features that should be considered in understanding genome evolution and function.


Assuntos
Anabaena/genética , Anabaena/metabolismo , Genoma Bacteriano , Genômica , Tropanos/metabolismo , Anabaena/classificação , Anabaena/isolamento & purificação , Biologia Computacional/métodos , Toxinas de Cianobactérias , Metabolismo Energético , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Anotação de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas , Sintenia , Sequências de Repetição em Tandem
5.
ISME J ; 8(7): 1440-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24451205

RESUMO

Bacterioplankton of the SAR11 clade are the most abundant microorganisms in marine systems, usually representing 25% or more of the total bacterial cells in seawater worldwide. SAR11 is divided into subclades with distinct spatiotemporal distributions (ecotypes), some of which appear to be specific to deep water. Here we examine the genomic basis for deep ocean distribution of one SAR11 bathytype (depth-specific ecotype), subclade Ic. Four single-cell Ic genomes, with estimated completeness of 55%-86%, were isolated from 770 m at station ALOHA and compared with eight SAR11 surface genomes and metagenomic datasets. Subclade Ic genomes dominated metagenomic fragment recruitment below the euphotic zone. They had similar COG distributions, high local synteny and shared a large number (69%) of orthologous clusters with SAR11 surface genomes, yet were distinct at the 16S rRNA gene and amino-acid level, and formed a separate, monophyletic group in phylogenetic trees. Subclade Ic genomes were enriched in genes associated with membrane/cell wall/envelope biosynthesis and showed evidence of unique phage defenses. The majority of subclade Ic-specfic genes were hypothetical, and some were highly abundant in deep ocean metagenomic data, potentially masking mechanisms for niche differentiation. However, the evidence suggests these organisms have a similar metabolism to their surface counterparts, and that subclade Ic adaptations to the deep ocean do not involve large variations in gene content, but rather more subtle differences previously observed deep ocean genomic data, like preferential amino-acid substitutions, larger coding regions among SAR11 clade orthologs, larger intergenic regions and larger estimated average genome size.


Assuntos
Alphaproteobacteria/genética , Genes de RNAr , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Alphaproteobacteria/classificação , DNA Intergênico/classificação , Ecótipo , Genômica , Metagenoma , RNA Ribossômico 16S/classificação , Análise de Célula Única , Sintenia
6.
Methods Enzymol ; 531: 61-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24060116

RESUMO

Genetic analysis of single cells is emerging as a powerful approach for studies of heterogeneous cell populations. Indeed, the notion of homogeneous cell populations is receding as approaches to resolve genetic and phenotypic variation between single cells are applied throughout the life sciences. A key step in single-cell genomic analysis today is the physical isolation of individual cells from heterogeneous populations, particularly microbial populations, which often exhibit high diversity. Here, we detail the construction and use of instrumentation for optical trapping inside microfluidic devices to select individual cells for analysis by methods including nucleic acid sequencing. This approach has unique advantages for analyses of rare community members, cells with irregular morphologies, small quantity samples, and studies that employ advanced optical microscopy.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Pinças Ópticas , Análise de Célula Única , Genoma Bacteriano , Genômica/métodos , Análise de Sequência de DNA/métodos
7.
Proc Natl Acad Sci U S A ; 110(28): 11463-8, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23801761

RESUMO

Planktonic bacteria dominate surface ocean biomass and influence global biogeochemical processes, but remain poorly characterized owing to difficulties in cultivation. Using large-scale single cell genomics, we obtained insight into the genome content and biogeography of many bacterial lineages inhabiting the surface ocean. We found that, compared with existing cultures, natural bacterioplankton have smaller genomes, fewer gene duplications, and are depleted in guanine and cytosine, noncoding nucleotides, and genes encoding transcription, signal transduction, and noncytoplasmic proteins. These findings provide strong evidence that genome streamlining and oligotrophy are prevalent features among diverse, free-living bacterioplankton, whereas existing laboratory cultures consist primarily of copiotrophs. The apparent ubiquity of metabolic specialization and mixotrophy, as predicted from single cell genomes, also may contribute to the difficulty in bacterioplankton cultivation. Using metagenome fragment recruitment against single cell genomes, we show that the global distribution of surface ocean bacterioplankton correlates with temperature and latitude and is not limited by dispersal at the time scales required for nucleotide substitution to exceed the current operational definition of bacterial species. Single cell genomes with highly similar small subunit rRNA gene sequences exhibited significant genomic and biogeographic variability, highlighting challenges in the interpretation of individual gene surveys and metagenome assemblies in environmental microbiology. Our study demonstrates the utility of single cell genomics for gaining an improved understanding of the composition and dynamics of natural microbial assemblages.


Assuntos
Bactérias/classificação , Genoma Bacteriano , Biologia Marinha , Plâncton/classificação , Microbiologia da Água , Bactérias/genética , Geografia , Oceanos e Mares , Plâncton/genética
8.
Nature ; 494(7437): 357-60, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23407494

RESUMO

Several reports proposed that the extraordinary dominance of the SAR11 bacterial clade in ocean ecosystems could be a consequence of unusual mechanisms of resistance to bacteriophage infection, including 'cryptic escape' through reduced cell size and/or K-strategist defence specialism. Alternatively, the evolution of high surface-to-volume ratios coupled with minimal genomes containing high-affinity transporters enables unusually efficient metabolism for oxidizing dissolved organic matter in the world's oceans that could support vast population sizes despite phage susceptibility. These ideas are important for understanding plankton ecology because they emphasize the potentially important role of top-down mechanisms in predation, thus determining the size of SAR11 populations and their concomitant role in biogeochemical cycling. Here we report the isolation of diverse SAR11 viruses belonging to two virus families in culture, for which we propose the name 'pelagiphage', after their host. Notably, the pelagiphage genomes were highly represented in marine viral metagenomes, demonstrating their importance in nature. One of the new phages, HTVC010P, represents a new podovirus subfamily more abundant than any seen previously, in all data sets tested, and may represent one of the most abundant virus subfamilies in the biosphere. This discovery disproves the theory that SAR11 cells are immune to viral predation and is consistent with the interpretation that the success of this highly abundant microbial clade is the result of successfully evolved adaptation to resource competition.


Assuntos
Organismos Aquáticos/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Água do Mar/virologia , Organismos Aquáticos/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/virologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bermudas , Biota , Comportamento Competitivo , Cadeia Alimentar , Genoma Viral/genética , Metagenoma/genética , Modelos Biológicos , Dados de Sequência Molecular , Oregon , Oceano Pacífico , Plâncton/fisiologia , Água do Mar/microbiologia
9.
mBio ; 3(5)2012.
Artigo em Inglês | MEDLINE | ID: mdl-22991429

RESUMO

SAR11 is an ancient and diverse clade of heterotrophic bacteria that are abundant throughout the world's oceans, where they play a major role in the ocean carbon cycle. Correlations between the phylogenetic branching order and spatiotemporal patterns in cell distributions from planktonic ocean environments indicate that SAR11 has evolved into perhaps a dozen or more specialized ecotypes that span evolutionary distances equivalent to a bacterial order. We isolated and sequenced genomes from diverse SAR11 cultures that represent three major lineages and encompass the full breadth of the clade. The new data expand observations about genome evolution and gene content that previously had been restricted to the SAR11 Ia subclade, providing a much broader perspective on the clade's origins, evolution, and ecology. We found small genomes throughout the clade and a very high proportion of core genome genes (48 to 56%), indicating that small genome size is probably an ancestral characteristic. In their level of core genome conservation, the members of SAR11 are outliers, the most conserved free-living bacteria known. Shared features of the clade include low GC content, high gene synteny, a large hypervariable region bounded by rRNA genes, and low numbers of paralogs. Variation among the genomes included genes for phosphorus metabolism, glycolysis, and C1 metabolism, suggesting that adaptive specialization in nutrient resource utilization is important to niche partitioning and ecotype divergence within the clade. These data provide support for the conclusion that streamlining selection for efficient cell replication in the planktonic habitat has occurred throughout the evolution and diversification of this clade. IMPORTANCE The SAR11 clade is the most abundant group of marine microorganisms worldwide, making them key players in the global carbon cycle. Growing knowledge about their biochemistry and metabolism is leading to a more mechanistic understanding of organic carbon oxidation and sequestration in the oceans. The discovery of small genomes in SAR11 provided crucial support for the theory that streamlining selection can drive genome reduction in low-nutrient environments. Study of isolates in culture revealed atypical organic nutrient requirements that can be attributed to genome reduction, such as conditional auxotrophy for glycine and its precursors, a requirement for reduced sulfur compounds, and evidence for widespread cycling of C1 compounds in marine environments. However, understanding the genetic variation and distribution of such pathways and characteristics like streamlining throughout the group has required the isolation and genome sequencing of diverse SAR11 representatives, an analysis of which we provide here.


Assuntos
Bactérias/classificação , Bactérias/genética , Sequência Conservada , Genoma Bacteriano , Água do Mar/microbiologia , Composição de Bases , Análise por Conglomerados , Evolução Molecular , Genes Bacterianos , Variação Genética , Filogenia , Sintenia
10.
PLoS One ; 6(8): e23973, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21886845

RESUMO

The SAR11 Alphaproteobacteria are the most abundant heterotrophs in the oceans and are believed to play a major role in mineralizing marine dissolved organic carbon. Their genomes are among the smallest known for free-living heterotrophic cells, raising questions about how they successfully utilize complex organic matter with a limited metabolic repertoire. Here we show that conserved genes in SAR11 subgroup Ia (Candidatus Pelagibacter ubique) genomes encode pathways for the oxidation of a variety of one-carbon compounds and methyl functional groups from methylated compounds. These pathways were predicted to produce energy by tetrahydrofolate (THF)-mediated oxidation, but not to support the net assimilation of biomass from C1 compounds. Measurements of cellular ATP content and the oxidation of (14)C-labeled compounds to (14)CO(2) indicated that methanol, formaldehyde, methylamine, and methyl groups from glycine betaine (GBT), trimethylamine (TMA), trimethylamine N-oxide (TMAO), and dimethylsulfoniopropionate (DMSP) were oxidized by axenic cultures of the SAR11 strain Ca. P. ubique HTCC1062. Analyses of metagenomic data showed that genes for C1 metabolism occur at a high frequency in natural SAR11 populations. In short term incubations, natural communities of Sargasso Sea microbial plankton expressed a potential for the oxidation of (14)C-labeled formate, formaldehyde, methanol and TMAO that was similar to cultured SAR11 cells and, like cultured SAR11 cells, incorporated a much larger percentage of pyruvate and glucose (27-35%) than of C1 compounds (2-6%) into biomass. Collectively, these genomic, cellular and environmental data show a surprising capacity for demethylation and C1 oxidation in SAR11 cultures and in natural microbial communities dominated by SAR11, and support the conclusion that C1 oxidation might be a significant conduit by which dissolved organic carbon is recycled to CO(2) in the upper ocean.


Assuntos
Alphaproteobacteria/metabolismo , Organismos Aquáticos/metabolismo , Carbono/metabolismo , Dióxido de Carbono , Metilação , Oxigênio/metabolismo , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...