Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 35(1): 102148, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439910

RESUMO

Biallelic variations in the aryl hydrocarbon receptor interacting protein-like 1 (AIPL1) gene cause Leber congenital amaurosis subtype 4 (LCA4), an autosomal recessive early-onset severe retinal dystrophy that leads to the rapid degeneration of retinal photoreceptors and the severe impairment of sight within the first few years of life. Currently, there is no treatment or cure for AIPL1-associated LCA4. In this study, we investigated the potential of adeno-associated virus-mediated AIPL1 gene replacement therapy in two previously validated human retinal organoid (RO) models of LCA4. We report here that photoreceptor-specific AIPL1 gene replacement therapy, currently being tested in a first-in-human application, effectively rescued molecular features of AIPL1-associated LCA4 in these models. Notably, the loss of retinal phosphodiesterase 6 was rescued and elevated cyclic guanosine monophosphate (cGMP) levels were reduced following treatment. Transcriptomic analysis of untreated and AAV-transduced ROs revealed transcriptomic changes in response to elevated cGMP levels and viral infection, respectively. Overall, this study supports AIPL1 gene therapy as a promising therapeutic intervention for LCA4.

2.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339118

RESUMO

Variants within the Retinitis Pigmentosa GTPase regulator (RPGR) gene are the predominant cause of X-Linked Retinitis Pigmentosa (XLRP), a common and severe form of inherited retinal disease. XLRP is characterised by the progressive degeneration and loss of photoreceptors, leading to visual loss and, ultimately, bilateral blindness. Unfortunately, there are no effective approved treatments for RPGR-associated XLRP. We sought to investigate the efficacy of RPGRORF15 gene supplementation using a clinically relevant construct in human RPGR-deficient retinal organoids (ROs). Isogenic RPGR knockout (KO)-induced pluripotent stem cells (IPSCs) were generated using established CRISPR/Cas9 gene editing methods targeting RPGR. RPGR-KO and isogenic wild-type IPSCs were differentiated into ROs and utilised to test the adeno associated virus (AAV) RPGR (AAV-RPGR) clinical vector construct. The transduction of RPGR-KO ROs using AAV-RPGR successfully restored RPGR mRNA and protein expression and localisation to the photoreceptor connecting cilium in rod and cone photoreceptors. Vector-derived RPGR demonstrated equivalent levels of glutamylation to WT ROs. In addition, treatment with AAV-RPGR restored rhodopsin localisation within RPGR-KO ROs, reducing mislocalisation to the photoreceptor outer nuclear layer. These data provide mechanistic insights into RPGRORF15 gene supplementation functional potency in human photoreceptor cells and support the previously reported Phase I/II trial positive results using this vector construct in patients with RPGR-associated XLRP, which is currently being tested in a Phase III clinical trial.


Assuntos
Opsinas , Retinose Pigmentar , Humanos , Opsinas/genética , Dependovirus/genética , Dependovirus/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Transporte/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Rodopsina/genética , Terapia Genética/métodos , Mutação
3.
Methods Mol Biol ; 2434: 245-255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213022

RESUMO

Inherited retinal dystrophies, such as Leber congenital amaurosis, Stargardt disease, and retinitis pigmentosa, are characterized by photoreceptor dysfunction and death and currently have few treatment options. Recent technological advances in induced pluripotent stem cell (iPSC) technology and differentiation methods mean that human photoreceptors can now be studied in vitro. For example, retinal organoids provide a platform to study the development of the human retina and mechanisms of diseases in the dish, as well as being a potential source for cell transplantation. Here, we describe differentiation protocols for 3D cultures that produce retinal organoids containing photoreceptors with rudimentary outer segments. These protocols can be used as a model to understand retinal disease mechanisms and test potential therapies, including antisense oligonucleotides (AONs) to alter gene expression or RNA processing. This "retina in a dish" model is well suited for use with AONs, as the organoids recapitulate patient mutations in the correct genomic and cellular context, to test potential efficacy and examine off-target effects on the translational path to the clinic.


Assuntos
Células-Tronco Pluripotentes Induzidas , Retinose Pigmentar , Diferenciação Celular/genética , Humanos , Organoides , Células Fotorreceptoras , Retina/metabolismo , Retinose Pigmentar/metabolismo
4.
Stem Cell Reports ; 15(1): 67-79, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32531192

RESUMO

RP2 mutations cause a severe form of X-linked retinitis pigmentosa (XLRP). The mechanism of RP2-associated retinal degeneration in humans is unclear, and animal models of RP2 XLRP do not recapitulate this severe phenotype. Here, we developed gene-edited isogenic RP2 knockout (RP2 KO) induced pluripotent stem cells (iPSCs) and RP2 patient-derived iPSC to produce 3D retinal organoids as a human retinal disease model. Strikingly, the RP2 KO and RP2 patient-derived organoids showed a peak in rod photoreceptor cell death at day 150 (D150) with subsequent thinning of the organoid outer nuclear layer (ONL) by D180 of culture. Adeno-associated virus-mediated gene augmentation with human RP2 rescued the degeneration phenotype of the RP2 KO organoids, to prevent ONL thinning and restore rhodopsin expression. Notably, these data show that 3D retinal organoids can be used to model photoreceptor degeneration and test potential therapies to prevent photoreceptor cell death.


Assuntos
Proteínas de Ligação ao GTP/genética , Células-Tronco Pluripotentes Induzidas/patologia , Proteínas de Membrana/genética , Modelos Biológicos , Organoides/patologia , Retina/patologia , Retinose Pigmentar/genética , Morte Celular , Sobrevivência Celular , Dependovirus , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Organoides/ultraestrutura , Retina/ultraestrutura , Células Fotorreceptoras Retinianas Bastonetes/patologia
6.
Mol Ther Nucleic Acids ; 12: 730-740, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30114557

RESUMO

Leber congenital amaurosis type 10 (LCA10) is a severe inherited retinal dystrophy associated with mutations in CEP290. The deep intronic c.2991+1655A>G mutation in CEP290 is the most common mutation in LCA10 individuals and represents an ideal target for oligonucleotide therapeutics. Here, a panel of antisense oligonucleotides was designed to correct the splicing defect associated with the mutation and screened for efficacy and safety. This identified QR-110 as the best-performing molecule. QR-110 restored wild-type CEP290 mRNA and protein expression levels in CEP290 c.2991+1655A>G homozygous and compound heterozygous LCA10 primary fibroblasts. Furthermore, in homozygous three-dimensional iPSC-derived retinal organoids, QR-110 showed a dose-dependent restoration of mRNA and protein function, as measured by percentage and length of photoreceptor cilia, without off-target effects. Localization studies in wild-type mice and rabbits showed that QR-110 readily reached all retinal layers, with an estimated half-life of 58 days. It was well tolerated following intravitreal injection in monkeys. In conclusion, the pharmacodynamic, pharmacokinetic, and safety properties make QR-110 a promising candidate for treating LCA10, and clinical development is currently ongoing.

7.
PLoS One ; 13(1): e0191048, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29315318

RESUMO

Correlative light-electron microscopy (CLEM) is a powerful technique allowing localisation of specific macromolecules within fluorescence microscopy (FM) images to be mapped onto corresponding high-resolution electron microscopy (EM) images. Existing methods are applicable to limited sample types and are technically challenging. Here we describe novel methods to perform CLEM and immuno-electron microscopy (iEM) on cryostat sections utilising the popular FM embedding solution, optimal cutting temperature (OCT) compound. Utilising these approaches, we have (i) identified the same phagosomes by FM and EM in the retinal pigment epithelium (RPE) of retinal tissue (ii) shown the correct localisation of rhodopsin on photoreceptor outer segment disc like-structures in iPSC derived optic cups and (iii) identified a novel interaction between peroxisomes and melanosomes as well as phagosomes in the RPE. These data show that cryostat sections allow easy characterisation of target macromolecule localisation within tissue samples, thus providing a substantial improvement over many conventional methods that are limited to cultured cells. As OCT embedding is routinely used for FM this provides an easily accessible and robust method for further analysis of existing samples by high resolution EM.


Assuntos
Luz , Microscopia Imunoeletrônica/métodos , Retina/ultraestrutura , Animais , Camundongos , Camundongos Endogâmicos C57BL , Retina/citologia , Tomografia de Coerência Óptica
9.
Hum Mol Genet ; 26(14): 2667-2677, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28475715

RESUMO

Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy. We recently identified mutations in REEP6, which encodes the receptor expression enhancing protein 6, in several families with autosomal recessive RP. REEP6 is related to the REEP and Yop1p family of ER shaping proteins and potential receptor accessory proteins, but the role of REEP6 in the retina is unknown. Here we characterize the disease mechanisms associated with loss of REEP6 function using a Reep6 knockout mouse generated by CRISPR/Cas9 gene editing. In control mice REEP6 was localized to the inner segment and outer plexiform layer of rod photoreceptors. The Reep6-/- mice exhibited progressive photoreceptor degeneration from P20 onwards. Ultrastructural analyses at P20 by transmission electron microscopy and 3View serial block face scanning EM revealed an expansion of the distal ER in the Reep6-/- rods and an increase in their number of mitochondria. Electroretinograms revealed photoreceptor dysfunction preceded degeneration, suggesting potential defects in phototransduction. There was no effect on the traffic of rhodopsin, Rom1 or peripherin/rds; however, the retinal guanylate cyclases GC1 and GC2 were severely affected in the Reep6 knockout animals, with almost undetectable expression. These changes correlated with an increase in C/EBP homologous protein (CHOP) expression and the activation of caspase 12, suggesting that ER stress contributes to cell death. Collectively, these data suggest that REEP6 plays an essential role in maintaining cGMP homeostasis though facilitating the stability and/or trafficking of guanylate cyclases and maintaining ER and mitochondrial homeostasis.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/deficiência , Distrofias Retinianas/metabolismo , Animais , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Retículo Endoplasmático/patologia , Proteínas do Olho , Edição de Genes , Guanilato Ciclase/metabolismo , Transdução de Sinal Luminoso , Proteínas de Membrana , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Knockout , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Distrofias Retinianas/genética , Distrofias Retinianas/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Rodopsina/metabolismo
10.
Hum Mol Genet ; 26(13): 2480-2492, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444310

RESUMO

Ciliary trafficking defects are the underlying cause of many ciliopathies, including Retinitis Pigmentosa (RP). Anterograde intraflagellar transport (IFT) is mediated by kinesin motor proteins; however, the function of the homodimeric Kif17 motor in cilia is poorly understood, whereas Kif7 is known to play an important role in stabilizing cilia tips. Here we identified the ciliary tip kinesins Kif7 and Kif17 as novel interaction partners of the small GTPase Arl3 and its regulatory GTPase activating protein (GAP) Retinitis Pigmentosa 2 (RP2). We show that Arl3 and RP2 mediate the localization of GFP-Kif17 to the cilia tip and competitive binding of RP2 and Arl3 with Kif17 complexes. RP2 and Arl3 also interact with another ciliary tip kinesin, Kif7, which is a conserved regulator of Hedgehog (Hh) signaling. siRNA-mediated loss of RP2 or Arl3 reduced the level of Kif7 at the cilia tip. This was further validated by reduced levels of Kif7 at cilia tips detected in fibroblasts and induced pluripotent stem cell (iPSC) 3D optic cups derived from a patient carrying an RP2 nonsense mutation c.519C > T (p.R120X), which lack detectable RP2 protein. Translational read-through inducing drugs (TRIDs), such as PTC124, were able to restore Kif7 levels at the ciliary tip of RP2 null cells. Collectively, our findings suggest that RP2 and Arl3 regulate the trafficking of specific kinesins to cilia tips and provide additional evidence that TRIDs could be clinically beneficial for patients with this retinal degeneration.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas do Olho/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Ribosilação do ADP/genética , Cílios/metabolismo , Proteínas do Olho/genética , Proteínas de Ligação ao GTP , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinesinas/genética , Cinesinas/metabolismo , Proteínas de Membrana/genética , Transporte Proteico , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo
11.
Sci Rep ; 7(1): 51, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28246391

RESUMO

Inherited retinal dystrophies are an important cause of blindness, for which currently there are no effective treatments. In order to study this heterogeneous group of diseases, adequate disease models are required in order to better understand pathology and to test potential therapies. Induced pluripotent stem cells offer a new way to recapitulate patient specific diseases in vitro, providing an almost limitless amount of material to study. We used fibroblast-derived induced pluripotent stem cells to generate retinal pigment epithelium (RPE) from an individual suffering from retinitis pigmentosa associated with biallelic variants in MERTK. MERTK has an essential role in phagocytosis, one of the major functions of the RPE. The MERTK deficiency in this individual results from a nonsense variant and so the MERTK-RPE cells were subsequently treated with two translational readthrough inducing drugs (G418 & PTC124) to investigate potential restoration of expression of the affected gene and production of a full-length protein. The data show that PTC124 was able to reinstate phagocytosis of labeled photoreceptor outer segments at a reduced, but significant level. These findings represent a confirmation of the usefulness of iPSC derived disease specific models in investigating the pathogenesis and screening potential treatments for these rare blinding disorders.


Assuntos
Gentamicinas/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Oxidiazóis/farmacologia , Fagocitose , Retinose Pigmentar/terapia , c-Mer Tirosina Quinase/metabolismo , Adulto , Humanos , Masculino , Elongação Traducional da Cadeia Peptídica , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , c-Mer Tirosina Quinase/genética
12.
Biochem Soc Trans ; 44(5): 1245-1251, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27911706

RESUMO

The photoreceptor cells in the retina have a highly specialised sensory cilium, the outer segment (OS), which is important for detecting light. Mutations in cilia-related genes often result in retinal degeneration. The ability to reprogramme human cells into induced pluripotent stem cells and then differentiate them into a wide range of different cell types has revolutionised our ability to study human disease. To date, however, the challenge of producing fully differentiated photoreceptors in vitro has limited the application of this technology in studying retinal degeneration. In this review, we will discuss recent advances in stem cell technology and photoreceptor differentiation. In particular, the development of photoreceptors with rudimentary OS that can be used to understand disease mechanisms and as an important model to test potential new therapies for inherited retinal ciliopathies.


Assuntos
Ciliopatias/patologia , Ciliopatias/terapia , Células-Tronco Pluripotentes Induzidas/citologia , Retina/patologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Cílios/metabolismo , Cílios/patologia , Ciliopatias/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Degeneração Retiniana/terapia
13.
Am J Hum Genet ; 99(6): 1305-1315, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889058

RESUMO

Retinitis pigmentosa (RP) is the most frequent form of inherited retinal dystrophy. RP is genetically heterogeneous and the genes identified to date encode proteins involved in a wide range of functional pathways, including photoreceptor development, phototransduction, the retinoid cycle, cilia, and outer segment development. Here we report the identification of biallelic mutations in Receptor Expression Enhancer Protein 6 (REEP6) in seven individuals with autosomal-recessive RP from five unrelated families. REEP6 is a member of the REEP/Yop1 family of proteins that influence the structure of the endoplasmic reticulum but is relatively unstudied. The six variants identified include three frameshift variants, two missense variants, and a genomic rearrangement that disrupts exon 1. Human 3D organoid optic cups were used to investigate REEP6 expression and confirmed the expression of a retina-specific isoform REEP6.1, which is specifically affected by one of the frameshift mutations. Expression of the two missense variants (c.383C>T [p.Pro128Leu] and c.404T>C [p.Leu135Pro]) and the REEP6.1 frameshift mutant in cultured cells suggest that these changes destabilize the protein. Furthermore, CRISPR-Cas9-mediated gene editing was used to produce Reep6 knock-in mice with the p.Leu135Pro RP-associated variant identified in one RP-affected individual. The homozygous knock-in mice mimic the clinical phenotypes of RP, including progressive photoreceptor degeneration and dysfunction of the rod photoreceptors. Therefore, our study implicates REEP6 in retinal homeostasis and highlights a pathway previously uncharacterized in retinal dystrophy.


Assuntos
Proteínas do Olho/genética , Genes Recessivos/genética , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Retinose Pigmentar/genética , Adolescente , Alelos , Animais , Criança , Pré-Escolar , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Proteínas de Membrana , Camundongos , Mutação de Sentido Incorreto/genética , Fenótipo , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/metabolismo , Adulto Jovem
14.
Sci Rep ; 6: 33792, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27653836

RESUMO

Autosomal dominant vitreoretinochoroidopathy (ADVIRC) is a rare, early-onset retinal dystrophy characterised by distinct bands of circumferential pigmentary degeneration in the peripheral retina and developmental eye defects. ADVIRC is caused by mutations in the Bestrophin1 (BEST1) gene, which encodes a transmembrane protein thought to function as an ion channel in the basolateral membrane of retinal pigment epithelial (RPE) cells. Previous studies suggest that the distinct ADVIRC phenotype results from alternative splicing of BEST1 pre-mRNA. Here, we have used induced pluripotent stem cell (iPSC) technology to investigate the effects of an ADVIRC associated BEST1 mutation (c.704T > C, p.V235A) in patient-derived iPSC-RPE. We found no evidence of alternate splicing of the BEST1 transcript in ADVIRC iPSC-RPE, however in patient-derived iPSC-RPE, BEST1 was expressed at the basolateral membrane and the apical membrane. During human eye development we show that BEST1 is expressed more abundantly in peripheral RPE compared to central RPE and is also expressed in cells of the developing retina. These results suggest that higher levels of mislocalised BEST1 expression in the periphery, from an early developmental stage, could provide a mechanism that leads to the distinct clinical phenotype observed in ADVIRC patients.

15.
Cell Stem Cell ; 18(6): 769-781, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27151457

RESUMO

Leber congenital amaurosis (LCA) is an inherited retinal dystrophy that causes childhood blindness. Photoreceptors are especially sensitive to an intronic mutation in the cilia-related gene CEP290, which causes missplicing and premature termination, but the basis of this sensitivity is unclear. Here, we generated differentiated photoreceptors in three-dimensional optic cups and retinal pigment epithelium (RPE) from iPSCs with this common CEP290 mutation to investigate disease mechanisms and evaluate candidate therapies. iPSCs differentiated normally into RPE and optic cups, despite abnormal CEP290 splicing and cilia defects. The highest levels of aberrant splicing and cilia defects were observed in optic cups, explaining the retinal-specific manifestation of this CEP290 mutation. Treating optic cups with an antisense morpholino effectively blocked aberrant splicing and restored expression of full-length CEP290, restoring normal cilia-based protein trafficking. These results provide a mechanistic understanding of the retina-specific phenotypes in CEP290 LCA patients and potential strategies for therapeutic intervention.


Assuntos
Cegueira/patologia , Cegueira/terapia , Células-Tronco Pluripotentes Induzidas/citologia , Padrões de Herança/genética , Disco Óptico/citologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular , Diferenciação Celular/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cílios/metabolismo , Proteínas do Citoesqueleto , Éxons/genética , Proteínas do Olho/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Amaurose Congênita de Leber/patologia , Masculino , Morfolinos/farmacologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Opsinas/metabolismo , Organogênese/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/ultraestrutura , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/ultraestrutura , Proteínas rab de Ligação ao GTP/metabolismo
16.
Comput Struct Biotechnol J ; 13: 382-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106463

RESUMO

Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE). It is one of the leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of induced pluripotent stem cell (IPSC)-derived retinal cells and tissues from individuals with retinal degeneration is a rapidly evolving technology that holds a great potential for its use in disease modelling. IPSCs provide an ideal platform to investigate normal and pathological retinogenesis, but also deliver a valuable source of retinal cell types for drug screening and cell therapy. In this review, we will provide some examples of the ways in which IPSCs have been used to model diseases of the outer retina including retinitis pigmentosa (RP), Usher syndrome (USH), Leber congenital amaurosis (LCA), gyrate atrophy (GA), juvenile neuronal ceroid lipofuscinosis (NCL), Best vitelliform macular dystrophy (BVMD) and age related macular degeneration (AMD).

17.
Hum Mol Genet ; 24(4): 972-86, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25292197

RESUMO

Mutations in the RP2 gene lead to a severe form of X-linked retinitis pigmentosa. RP2 patients frequently present with nonsense mutations and no treatments are currently available to restore RP2 function. In this study, we reprogrammed fibroblasts from an RP2 patient carrying the nonsense mutation c.519C>T (p.R120X) into induced pluripotent stem cells (iPSC), and differentiated these cells into retinal pigment epithelial cells (RPE) to study the mechanisms of disease and test potential therapies. RP2 protein was undetectable in the RP2 R120X patient cells, suggesting a disease mechanism caused by complete lack of RP2 protein. The RP2 patient fibroblasts and iPSC-derived RPE cells showed phenotypic defects in IFT20 localization, Golgi cohesion and Gß1 trafficking. These phenotypes were corrected by over-expressing GFP-tagged RP2. Using the translational read-through inducing drugs (TRIDs) G418 and PTC124 (Ataluren), we were able to restore up to 20% of endogenous, full-length RP2 protein in R120X cells. This level of restored RP2 was sufficient to reverse the cellular phenotypic defects observed in both the R120X patient fibroblasts and iPSC-RPE cells. This is the first proof-of-concept study to demonstrate successful read-through and restoration of RP2 function for the R120X nonsense mutation. The ability of the restored RP2 protein level to reverse the observed cellular phenotypes in cells lacking RP2 indicates that translational read-through could be clinically beneficial for patients.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas do Olho/genética , Células-Tronco Pluripotentes Induzidas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Mutação , Biossíntese de Proteínas , Epitélio Pigmentado da Retina/citologia , Diferenciação Celular , Reprogramação Celular , Cílios/metabolismo , Cílios/patologia , Proteínas do Olho/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas de Ligação ao GTP , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Oxidiazóis/farmacologia , Fenótipo , Biossíntese de Proteínas/efeitos dos fármacos , Transporte Proteico , Adulto Jovem
18.
Stem Cells Transl Med ; 3(11): 1295-304, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25273541

RESUMO

Human embryonic stem cells (hESCs) are a promising source of retinal pigment epithelium (RPE) cells: cells that can be used for the treatment of common and incurable forms of blindness, such as age-related macular degeneration. Although most hESC lines will produce a number of clusters of pigmented RPE cells within 30-50 days when allowed to spontaneously differentiate, the timing and efficiency of differentiation is highly variable. This could prove problematic in the design of robust processes for the large scale production of RPE cells for cell therapy. In this study we sought to identify, quantify, and reduce the sources of variability in hESC-RPE differentiation. By monitoring the emergence of pigmented cells over time, we show how the cell line, passaging method, passage number, and seeding density have a significant and reproducible effect on the RPE yield. To counter this variability, we describe the production of RPE cells from two cell lines in feeder-free, density controlled conditions using single cell dissociation and seeding that is more amenable to scaled up production. The efficacy of small molecules in directing differentiation toward the RPE lineage was tested in two hESC lines with divergent RPE differentiation capacities. Neural induction by treatment with a bone morphogenetic protein inhibitor, dorsomorphin, significantly enhanced the RPE yield in one cell line but significantly reduce it in another, generating instead a Chx10 positive neural progenitor phenotype. This result underlines the necessity to tailor differentiation protocols to suit the innate properties of different cell lines.


Assuntos
Diferenciação Celular , Células-Tronco Neurais , Células-Tronco Pluripotentes , Epitélio Pigmentado da Retina , Técnicas de Cultura de Células , Linhagem Celular , Proteínas de Homeodomínio/biossíntese , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Fatores de Transcrição/biossíntese
19.
Neurosci Lett ; 447(1): 17-9, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18840506

RESUMO

There is increasing evidence that impairment of mitochondrial function and oxidative damage are contributing factors to the pathophysiology of Parkinson's disease (PD). Studies have reported decreased levels of the mitochondrial electron transport chain carrier, coenzyme Q(10) (CoQ(10)) in plasma and platelets from PD patients. Although a deficit in peripheral CoQ(10) has been reported no studies have assessed the CoQ(10) status of the PD brain. In this study we investigated the CoQ(10) status of the substantia nigra, cerebellum, cortex and striatum brain regions of both PD patients and age-matched controls. The results of this study indicate a significant reduction (p=0.007) in CoQ(10) concentration in the cortex region of the brain. In conclusion, the results of this study indicate evidence of a deficit in brain CoQ(10) status may be involved in the pathophysiology of PD.


Assuntos
Encéfalo/enzimologia , Doença de Parkinson/patologia , Ubiquinona/análogos & derivados , Idoso , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...