Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Arch Physiother ; 12(1): 24, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36184611

RESUMO

BACKGROUND: Home exercise regimes are a well-utilised rehabilitation intervention for many conditions; however, adherence to prescribed programmes remains low. Digital interventions are recommended as an adjunct to face-to-face interventions by the National Health Service in the UK and may offer increased exercise adherence, however the evidence for this is conflicting. METHOD: A systematic review was undertaken using MEDLINE and CINAHL databases using the PRISMA guidelines. Randomised controlled trials in any clinical population evaluating the adherence to prescribed home exercise interventions with and without additional digital interventions were included. Publication quality was assessed using the Cochrane Risk of Bias tool. RESULTS: The search strategy returned a total of 1336 articles, of which 10 randomised controlled trials containing data for 1117 participants were eligible for inclusion. 565 participants were randomised to receive the interventions, and 552 to the control. Seven of the ten trials reported a significant difference in adherence between the control and intervention groups favouring an additional digital intervention. Three trials reported equivalent findings. These three reported longer-term outcomes, suggesting an interaction between adherence and duration of intervention. There was substantial heterogeneity in outcome assessment metrics used across the trials prohibiting formal meta-analysis. This included studies were of low to moderate quality in terms of risk of bias. CONCLUSION: The addition of a digital interventions to prescribed home exercise programmes can likely increase exercise adherence in the short term, with longer term effects less certain.

2.
Aging Cell ; 21(2): e13553, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35104377

RESUMO

Aging is associated with dramatic changes to DNA methylation (DNAm), although the causes and consequences of such alterations are unknown. Our ability to experimentally uncover mechanisms of epigenetic aging will be greatly enhanced by our ability to study and manipulate these changes using in vitro models. However, it remains unclear whether the changes elicited by cells in culture can serve as a model of what is observed in aging tissues in vivo. To test this, we serially passaged mouse embryonic fibroblasts (MEFs) and assessed changes in DNAm at each time point via reduced representation bisulfite sequencing. By developing a measure that tracked cellular aging in vitro, we tested whether it tracked physiological aging in various mouse tissues and whether anti-aging interventions modulate this measure. Our measure, termed CultureAGE, was shown to strongly increase with age when examined in multiple tissues (liver, lung, kidney, blood, and adipose). As a control, we confirmed that the measure was not a marker of cellular senescence, suggesting that it reflects a distinct yet progressive cellular aging phenomena that can be induced in vitro. Furthermore, we demonstrated slower epigenetic aging in animals undergoing caloric restriction and a resetting of our measure in lung and kidney fibroblasts when re-programmed to iPSCs. Enrichment and clustering analysis implicated EED and Polycomb group (PcG) factors as potentially important chromatin regulators in translational culture aging phenotypes. Overall, this study supports the concept that physiologically relevant aging changes can be induced in vitro and used to uncover mechanistic insights into epigenetic aging.


Assuntos
Epigênese Genética , Fibroblastos , Envelhecimento/genética , Animais , Metilação de DNA/genética , Epigenômica , Camundongos
3.
Sci Transl Med ; 14(630): eabf5473, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108062

RESUMO

Metastasis is the major cause of cancer-related deaths due to the lack of effective therapies. Emerging evidence suggests that certain epigenetic and transcriptional regulators drive cancer metastasis and could be targeted for metastasis treatment. To identify epigenetic regulators of breast cancer metastasis, we profiled the transcriptomes of matched pairs of primary breast tumors and metastases from human patients. We found that distant metastases are more immune inert with increased M2 macrophages compared to their matched primary tumors. The acetyl-lysine reader, cat eye syndrome chromosome region candidate 2 (CECR2), was the top up-regulated epigenetic regulator in metastases associated with an increased abundance of M2 macrophages and worse metastasis-free survival. CECR2 was required for breast cancer metastasis in multiple mouse models, with more profound effect in the immunocompetent setting. Mechanistically, the nuclear factor κB (NF-κB) family member v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA) recruits CECR2 to increase chromatin accessibility and activate the expression of their target genes. These target genes include multiple metastasis-promoting genes, such as TNC, MMP2, and VEGFA, and cytokine genes CSF1 and CXCL1, which are critical for immunosuppression at metastatic sites. Consistent with these results, pharmacological inhibition of CECR2 bromodomain impeded NF-κB-mediated immune suppression by macrophages and inhibited breast cancer metastasis. These results reveal that targeting CECR2 may be a strategy to treat metastatic breast cancer.


Assuntos
Neoplasias da Mama , NF-kappa B , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Terapia de Imunossupressão , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Metástase Neoplásica/patologia , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição
4.
PLoS One ; 16(11): e0259718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34818376

RESUMO

Finding objects and motifs across artworks is of great importance for art history as it helps to understand individual works and analyze relations between them. The advent of digitization has produced extensive digital art collections with many research opportunities. However, manual approaches are inadequate to handle this amount of data, and it requires appropriate computer-based methods to analyze them. This article presents a visual search algorithm and user interface to support art historians to find objects and motifs in extensive datasets. Artistic image collections are subject to significant domain shifts induced by large variations in styles, artistic media, and materials. This poses new challenges to most computer vision models which are trained on photographs. To alleviate this problem, we introduce a multi-style feature aggregation that projects images into the same distribution, leading to more accurate and style-invariant search results. Our retrieval system is based on a voting procedure combined with fast nearest-neighbor search and enables finding and localizing motifs within an extensive image collection in seconds. The presented approach significantly improves the state-of-the-art in terms of accuracy and search time on various datasets and applies to large and inhomogeneous collections. In addition to the search algorithm, we introduce a user interface that allows art historians to apply our algorithm in practice. The interface enables users to search for single regions, multiple regions regarding different connection types and holds an interactive feedback system to improve retrieval results further. With our methodological contribution and easy-to-use user interface, this work manifests further progress towards a computer-based analysis of visual art.


Assuntos
Algoritmos , Arte , Análise por Conglomerados
5.
MAbs ; 13(1): 1913791, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33974508

RESUMO

Simlukafusp alfa (FAP-IL2v, RO6874281/RG7461) is an immunocytokine comprising an antibody against fibroblast activation protein α (FAP) and an IL-2 variant with a retained affinity for IL-2Rßγ > IL-2 Rßγ and abolished binding to IL-2 Rα. Here, we investigated the immunostimulatory properties of FAP-IL2v and its combination with programmed cell death protein 1 (PD-1) checkpoint inhibition, CD40 agonism, T cell bispecific and antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. The binding and immunostimulatory properties of FAP-IL2v were investigated in vitro and compared with FAP-IL2wt. Tumor targeting was investigated in tumor-bearing mice and in a rhesus monkey. The ability of FAP-IL2v to potentiate the efficacy of different immunotherapies was investigated in different xenograft and syngeneic murine tumor models. FAP-IL2v bound IL-2 Rßγ and FAP with high affinity in vitro, inducing dose-dependent proliferation of natural killer (NK) cells and CD4+/CD8+ T cells while being significantly less potent than FAP-IL2wt in activating immunosuppressive regulatory T cells (Tregs). T cells activated by FAP-IL2v were less sensitive to Fas-mediated apoptosis than those activated by FAP-IL2wt. Imaging studies demonstrated improved tumor targeting of FAP-IL2v compared to FAP-IL2wt. Furthermore, FAP-IL2v significantly enhanced the in vitro and in vivo activity of therapeutic antibodies that mediate antibody-dependent or T cell-dependent cellular cytotoxicity (TDCC) and of programmed death-ligand 1 (PD-L1) checkpoint inhibition. The triple combination of FAP-IL2v with an anti-PD-L1 antibody and an agonistic CD40 antibody was most efficacious. These data indicate that FAP-IL2v is a potent immunocytokine that potentiates the efficacy of different T- and NK-cell-based cancer immunotherapies.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Neoplasias Experimentais/patologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Citocinas/farmacologia , Endopeptidases , Humanos , Imunoterapia/métodos , Ativação Linfocitária/efeitos dos fármacos , Macaca mulatta , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Neurol Neurosurg Psychiatry ; 91(9): 968-974, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32636213

RESUMO

BACKGROUND: In neurodegenerative diseases, alongside genetic factors, the possible intervention of environmental factors in the pathogenesis is increasingly being considered. In particular, recent evidence suggests the intervention of a pesticide-like xenobiotic in the initiation of disease with Lewy bodies (DLB). OBJECTIVES: To test for the presence of pesticides or other xenobiotics in the cerebrospinal fluid (CSF) of patients with DLB. METHODS: A total of 45 patients were included in this study: 16 patients with DLB at the prodromal stage, 8 patients with DLB at the demented stage, 8 patients with Alzheimer's disease (AD) at the prodromal stage and 13 patients with AD at the demented stage. CSF was obtained by lumbar puncture and analysed by liquid chromatography-mass spectrometry. RESULTS: Among the compounds detected in greater abundance in the CSF of patients with DLB compared with patients with AD, only one had a xenobiotic profile potentially related to the pathophysiology of DLB. After normalisation and scaling, bis(2-ethylhexyl) phthalate was more abundant in the CSF of patients with DLB (whole cohort: 2.7-fold abundant in DLB, p=0.031; patients with dementia: 3.8-fold abundant in DLB, p=0.001). CONCLUSIONS: This study is the first reported presence of a phthalate in the CSF of patients with DLB. This molecule, which is widely distributed in the environment and enters the body orally, nasally and transdermally, was first introduced in the 1920s as a plasticizer. Thereafter, the first cases of DLB were described in the 1960s and 1970s. These observations suggest that phthalates may be involved in the pathophysiology of DLB.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Dietilexilftalato/efeitos adversos , Dietilexilftalato/líquido cefalorraquidiano , Exposição Ambiental , Doença por Corpos de Lewy/líquido cefalorraquidiano , Metabolômica , Idoso , Doença de Alzheimer/diagnóstico , Feminino , Humanos , Doença por Corpos de Lewy/diagnóstico , Masculino , Pessoa de Meia-Idade , Sintomas Prodrômicos , Xenobióticos/efeitos adversos
7.
Cancer Res ; 80(3): 524-535, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31690671

RESUMO

Acquired resistance to HER2-targeted therapies occurs frequently in HER2+ breast tumors and new strategies for overcoming resistance are needed. Here, we report that resistance to trastuzumab is reversible, as resistant cells regained sensitivity to the drug after being cultured in drug-free media. RNA-sequencing analysis showed that cells resistant to trastuzumab or trastuzumab + pertuzumab in combination increased expression of oxidative phosphorylation pathway genes. Despite minimal changes in mitochondrial respiration, these cells exhibited increased expression of ATP synthase genes and selective dependency on ATP synthase function. Resistant cells were sensitive to inhibition of ATP synthase by oligomycin A, and knockdown of ATP5J or ATP5B, components of ATP synthase complex, rendered resistant cells responsive to a low dose of trastuzumab. Furthermore, combining ATP synthase inhibitor oligomycin A with trastuzumab led to regression of trastuzumab-resistant tumors in vivo. In conclusion, we identify a novel vulnerability of cells with acquired resistance to HER2-targeted antibody therapies and reveal a new therapeutic strategy to overcome resistance. SIGNIFICANCE: These findings implicate ATP synthase as a novel potential target for tumors resistant to HER2-targeted therapies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Animais , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Oligomicinas/administração & dosagem , Trastuzumab/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Sci Transl Med ; 11(496)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189721

RESUMO

Endogenous costimulatory molecules on T cells such as 4-1BB (CD137) can be leveraged for cancer immunotherapy. Systemic administration of agonistic anti-4-1BB antibodies, although effective preclinically, has not advanced to phase 3 trials because they have been hampered by both dependency on Fcγ receptor-mediated hyperclustering and hepatotoxicity. To overcome these issues, we engineered proteins simultaneously targeting 4-1BB and a tumor stroma or tumor antigen: FAP-4-1BBL (RG7826) and CD19-4-1BBL. In the presence of a T cell receptor signal, they provide potent T cell costimulation strictly dependent on tumor antigen-mediated hyperclustering without systemic activation by FcγR binding. We could show targeting of FAP-4-1BBL to FAP-expressing tumor stroma and lymph nodes in a colorectal cancer-bearing rhesus monkey. Combination of FAP-4-1BBL with tumor antigen-targeted T cell bispecific (TCB) molecules in human tumor samples led to increased IFN-γ and granzyme B secretion. Further, combination of FAP- or CD19-4-1BBL with CEA-TCB (RG7802) or CD20-TCB (RG6026), respectively, resulted in tumor remission in mouse models, accompanied by intratumoral accumulation of activated effector CD8+ T cells. FAP- and CD19-4-1BBL thus represent an off-the-shelf combination immunotherapy without requiring genetic modification of effector cells for the treatment of solid and hematological malignancies.


Assuntos
Anticorpos Biespecíficos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Anticorpos Biespecíficos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Proliferação de Células/fisiologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Humanos , Imunoterapia , Linfonodos/imunologia , Linfonodos/metabolismo , Neoplasias/imunologia , Neoplasias/terapia
9.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541859

RESUMO

Therapeutic vaccines may be an important component of a treatment regimen for curing chronic hepatitis B virus (HBV) infection. We previously demonstrated that recombinant wild-type vesicular stomatitis virus (VSV) expressing the HBV middle surface glycoprotein (MHBs) elicits functional immune responses in mouse models of HBV replication. However, VSV has some undesirable pathogenic properties, and the use of this platform in humans requires further viral attenuation. We therefore generated a highly attenuated VSV that expresses MHBs and contains two attenuating mutations. This vector was evaluated for immunogenicity, pathogenesis, and anti-HBV function in mice. Compared to wild-type VSV, the highly attenuated virus displayed markedly reduced pathogenesis but induced similar MHBs-specific CD8+ T cell and antibody responses. The CD8+ T cell responses elicited by this vector in naive mice prevented HBV replication in animals that were later challenged by hydrodynamic injection or transduction with adeno-associated virus encoding the HBV genome (AAV-HBV). In mice in which persistent HBV replication was first established by AAV-HBV transduction, subsequent immunization with the attenuated VSV induced MHBs-specific CD8+ T cell responses that corresponded with reductions in serum and liver HBV antigens and nucleic acids. HBV control was associated with an increase in the frequency of intrahepatic HBV-specific CD8+ T cells and a transient elevation in serum alanine aminotransferase activity. The ability of VSV to induce a robust multispecific T cell response that controls HBV replication combined with the improved safety profile of the highly attenuated vector suggests that this platform offers a new approach for HBV therapeutic vaccination.IMPORTANCE A curative treatment for chronic hepatitis B must eliminate the virus from the liver, but current antiviral therapies typically fail to do so. Immune-mediated resolution of infection occurs in a small fraction of chronic HBV patients, which suggests the potential efficacy of therapeutic strategies that boost the patient's own immune response to the virus. We modified a safe form of VSV to express an immunogenic HBV protein and evaluated the efficacy of this vector in the prevention and treatment of HBV infection in mouse models. Our results show that this vector elicits HBV-specific immune responses that prevent the establishment of HBV infection and reduce viral proteins in the serum and viral DNA/RNA in the liver of mice with persistent HBV replication. These findings suggest that highly attenuated and safe virus-based vaccine platforms have the potential to be utilized for the development of an effective therapeutic vaccine against chronic HBV infection.


Assuntos
Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/prevenção & controle , Hepatite B Crônica/terapia , Vacinas Atenuadas/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Alanina Transaminase/sangue , Animais , Linfócitos T CD8-Positivos/imunologia , Hepatite B Crônica/imunologia , Imunoterapia/métodos , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vacinas Virais/imunologia , Replicação Viral/imunologia
10.
PLoS Biol ; 16(8): e2006134, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30080846

RESUMO

Cyclic GMP-AMP (cGAMP) synthase (cGAS) stimulator of interferon genes (STING) senses pathogen-derived or abnormal self-DNA in the cytosol and triggers an innate immune defense against microbial infection and cancer. STING agonists induce both innate and adaptive immune responses and are a new class of cancer immunotherapy agents tested in multiple clinical trials. However, STING is commonly silenced in cancer cells via unclear mechanisms, limiting the application of these agonists. Here, we report that the expression of STING is epigenetically suppressed by the histone H3K4 lysine demethylases KDM5B and KDM5C and is activated by the opposing H3K4 methyltransferases. The induction of STING expression by KDM5 blockade triggered a robust interferon response in a cytosolic DNA-dependent manner in breast cancer cells. This response resulted in resistance to infection by DNA and RNA viruses. In human tumors, KDM5B expression is inversely associated with STING expression in multiple cancer types, with the level of intratumoral CD8+ T cells, and with patient survival in cancers with a high level of cytosolic DNA, such as human papilloma virus (HPV)-positive head and neck cancer. These results demonstrate a novel epigenetic regulatory pathway of immune response and suggest that KDM5 demethylases are potential targets for antipathogen treatment and anticancer immunotherapy.


Assuntos
Histona Desmetilases/fisiologia , Histona Desmetilases com o Domínio Jumonji/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Linhagem Celular , Citosol/metabolismo , DNA/metabolismo , Histona Metiltransferases/fisiologia , Histonas/fisiologia , Humanos , Imunidade Inata/fisiologia , Imunoterapia , Interferons/metabolismo , Interferons/fisiologia , Células MCF-7 , Proteínas de Membrana/metabolismo , Transdução de Sinais
12.
Oncoimmunology ; 6(3): e1277306, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28405498

RESUMO

We developed cergutuzumab amunaleukin (CEA-IL2v, RG7813), a novel monomeric CEA-targeted immunocytokine, that comprises a single IL-2 variant (IL2v) moiety with abolished CD25 binding, fused to the C-terminus of a high affinity, bivalent carcinoembryonic antigen (CEA)-specific antibody devoid of Fc-mediated effector functions. Its molecular design aims to (i) avoid preferential activation of regulatory T-cells vs. immune effector cells by removing CD25 binding; (ii) increase the therapeutic index of IL-2 therapy by (a) preferential retention at the tumor by having a lower dissociation rate from CEA-expressing cancer cells vs. IL-2R-expressing cells, (b) avoiding any FcγR-binding and Fc effector functions and (c) reduced binding to endothelial cells expressing CD25; and (iii) improve the pharmacokinetics, and thus convenience of administration, of IL-2. The crystal structure of the IL2v-IL-2Rßγ complex was determined and CEA-IL2v activity was assessed using human immune effector cells. Tumor targeting was investigated in tumor-bearing mice using 89Zr-labeled CEA-IL2v. Efficacy studies were performed in (a) syngeneic mouse models as monotherapy and combined with anti-PD-L1, and in (b) xenograft mouse models in combination with ADCC-mediating antibodies. CEA-IL2v binds to CEA with pM avidity but not to CD25, and consequently did not preferentially activate Tregs. In vivo, CEA-IL2v demonstrated superior pharmacokinetics and tumor targeting compared with a wild-type IL-2-based CEA immunocytokine (CEA-IL2wt). CEA-IL2v strongly expanded NK and CD8+ T cells, skewing the CD8+:CD4+ ratio toward CD8+ T cells both in the periphery and in the tumor, and mediated single agent efficacy in syngeneic MC38-CEA and PancO2-CEA models. Combination with trastuzumab, cetuximab and imgatuzumab, all of human IgG1 isotype, resulted in superior efficacy compared with the monotherapies alone. Combined with anti-PD-L1, CEA-IL2v mediated superior efficacy over the respective monotherapies, and over the combination with an untargeted control immunocytokine. These preclinical data support the ongoing clinical investigation of the cergutuzumab amunaleukin immunocytokine with abolished CD25 binding for the treatment of CEA-positive solid tumors in combination with PD-L1 checkpoint blockade and ADCC competent antibodies.

13.
J Lesbian Stud ; 20(3-4): 299-323, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27254758

RESUMO

People living in the role of the "other" sex in Native American cultures, often entering into same-sex relationships, have been subject to various anthropological, historical, and psychological analyses and interpretations. Most recently, there has been a shift to an indigenist/decolonial interdisciplinary focus on lesbian, gay, bisexual, transgender, and queer Native people. This article gives a discussion of approaches to the subject, with a focus on female gender variability. An overview is given of the latter, complemented by a discussion of the identities and concerns of contemporary Native lesbians, many of whom identify as "two-spirit," a term that alludes to the dual, spiritually powerful nature traditionally attributed in a number of Native American cultures to individuals who combine the feminine and masculine.


Assuntos
Homossexualidade Feminina/psicologia , Indígenas Norte-Americanos/psicologia , Espiritualidade , Feminino , Humanos , Masculino
14.
Biotechnol Bioeng ; 113(11): 2386-93, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27144878

RESUMO

Cell line generation for production of biopharmaceuticals in mammalian cells usually involves intensive screening of clones to identify the rare high producers. In order to facilitate efficient and selective fluorescence activated cell sorting (FACS) based enrichment and cloning of antibody producing CHO cells, we developed a special vector setup by inserting a leaky translation termination signal between the heavy chain of an IgG antibody and an IgG transmembrane domain. Partial read-through during translation of the antibody heavy chain leads to display of a subset of the produced antibody on the surface of the expressing cell. We could show that the level of surface expression correlates well with the productivity. By applying FACS, high producing cells can be selectively enriched and cloned. Two sequential FACS enrichment cycles were performed which led to more than eightfold increased productivities of transfected and selected cell populations without cloning. The combination of selective FACS enrichment and FACS cloning with the new vector setup led to a sevenfold higher average productivity of the resulting clones as compared to a reference vector. Productivity and production stability assessment of clones generated with the new vector showed no negative impact of the co-expression of transmembrane antibody. Clone productivities of 4 g/L in a generic shake flask fed-batch model were achieved. Thus, this new vector setup facilitates fast and selective isolation of high producing production cell lines and allows significant reduction of clone screening efforts during cell line development for production cell lines. Additionally, the high productivity of FACS-enriched but non-clonal cell populations supports rapid, high yield, and cost efficient material production in early project phases. Biotechnol. Bioeng. 2016;113: 2386-2393. © 2016 Wiley Periodicals, Inc.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Separação Celular/métodos , Citometria de Fluxo/métodos , Vetores Genéticos/genética , Engenharia de Proteínas/métodos , Animais , Anticorpos Monoclonais/genética , Células CHO , Clonagem Molecular/métodos , Cricetulus
15.
Sci Adv ; 2(11): e1501662, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28138513

RESUMO

The complexity by which cells regulate gene and protein expression is multifaceted and intricate. Regulation of 3' untranslated region (UTR) processing of mRNA has been shown to play a critical role in development and disease. However, the process by which cells select alternative mRNA forms is not well understood. We discovered that the Saccharomyces cerevisiae lysine demethylase, Jhd2 (also known as KDM5), recruits 3'UTR processing machinery and promotes alteration of 3'UTR length for some genes in a demethylase-dependent manner. Interaction of Jhd2 with both chromatin and RNA suggests that Jhd2 affects selection of polyadenylation sites through a transcription-coupled mechanism. Furthermore, its mammalian homolog KDM5B (also known as JARID1B or PLU1), but not KDM5A (also known as JARID1A or RBP2), promotes shortening of CCND1 transcript in breast cancer cells. Consistent with these results, KDM5B expression correlates with shortened CCND1 in human breast tumor tissues. In contrast, both KDM5A and KDM5B are involved in the lengthening of DICER1. Our findings suggest both a novel role for this family of demethylases and a novel targetable mechanism for 3'UTR processing.


Assuntos
Regiões 3' não Traduzidas , Neoplasias da Mama/enzimologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias da Mama/genética , Ciclina D1/genética , Ciclina D1/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Células MCF-7 , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteína 2 de Ligação ao Retinoblastoma/genética , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Clin Cancer Res ; 22(10): 2453-61, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26581243

RESUMO

PURPOSE: Imgatuzumab (GA201) is a novel anti-EGFR mAb that is glycoengineered for enhanced antibody-dependent cellular cytotoxicity (ADCC). Future treatment schedules for imgatuzumab will likely involve the use of potentially immunosuppressive drugs, such as premedication therapies, to mitigate infusion reactions characteristic of mAb therapy and chemotherapy combination partners. Because of the strong immunologic component of mode of action of imgatuzumab, it is important to understand whether these drugs influence imgatuzumab-mediated ADCC and impact efficacy. EXPERIMENTAL DESIGN: We performed a series of ADCC assays using human peripheral blood mononuclear cells that were first preincubated in physiologically relevant concentrations of commonly used premedication drugs and cancer chemotherapies. The ability of common chemotherapy agents to enhance the efficacy of imgatuzumab in vivo was then examined using orthotopic xenograft models of human cancer. RESULTS: A majority of premedication and chemotherapy drugs investigated had no significant effect on the ADCC activity of imgatuzumab in vitro Furthermore, enhanced in vivo efficacy was seen with imgatuzumab combination regimens compared with single-agent imgatuzumab, single-agent chemotherapy, or cetuximab combinations. CONCLUSIONS: These data indicate that medications currently coadministered with anti-EGFR therapies are unlikely to diminish the ADCC capabilities of imgatuzumab. Further studies using syngeneic models with functional adaptive T-cell responses are now required to fully understand how chemotherapy agents will influence a long-term response to imgatuzumab therapy. Thus, this study and future ones can provide a framework for designing imgatuzumab combination regimens with enhanced efficacy for investigation in phase II trials. Clin Cancer Res; 22(10); 2453-61. ©2015 AACR.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Células A549 , Linhagem Celular Tumoral , Cetuximab/uso terapêutico , Terapia Combinada/métodos , Receptores ErbB/antagonistas & inibidores , Células HT29 , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo
17.
Nature ; 520(7548): 553-7, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25642965

RESUMO

Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids. The abundant mtDNA-binding protein TFAM (transcription factor A, mitochondrial) regulates nucleoid architecture, abundance and segregation. Complete mtDNA depletion profoundly impairs oxidative phosphorylation, triggering calcium-dependent stress signalling and adaptive metabolic responses. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and ageing, remain poorly defined. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signalling to enhance the expression of a subset of interferon-stimulated genes. Mechanistically, we find that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS (also known as MB21D1) and promotes STING (also known as TMEM173)-IRF3-dependent signalling to elevate interferon-stimulated gene expression, potentiate type I interferon responses and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which enhances antiviral signalling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signalling and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully engage antiviral innate immunity.


Assuntos
DNA Mitocondrial/metabolismo , Herpesvirus Humano 1/imunologia , Imunidade Inata/imunologia , Estresse Fisiológico , Animais , Linhagem Celular , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Proteínas de Grupo de Alta Mobilidade/deficiência , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases/metabolismo
18.
Mol Cancer Ther ; 12(10): 2031-42, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23873847

RESUMO

We report the first preclinical in vitro and in vivo comparison of GA101 (obinutuzumab), a novel glycoengineered type II CD20 monoclonal antibody, with rituximab and ofatumumab, the two currently approved type I CD20 antibodies. The three antibodies were compared in assays measuring direct cell death (AnnexinV/PI staining and time-lapse microscopy), complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), and internalization. The models used for the comparison of their activity in vivo were SU-DHL4 and RL xenografts. GA101 was found to be superior to rituximab and ofatumumab in the induction of direct cell death (independent of mechanical manipulation required for cell aggregate disruption formed by antibody treatment), whereas it was 10 to 1,000 times less potent in mediating CDC. GA101 showed superior activity to rituximab and ofatumumab in ADCC and whole-blood B-cell depletion assays, and was comparable with these two in ADCP. GA101 also showed slower internalization rate upon binding to CD20 than rituximab and ofatumumab. In vivo, GA101 induced a strong antitumor effect, including complete tumor remission in the SU-DHL4 model and overall superior efficacy compared with both rituximab and ofatumumab. When rituximab-pretreated animals were used, second-line treatment with GA101 was still able to control tumor progression, whereas tumors escaped rituximab treatment. Taken together, the preclinical data show that the glyoengineered type II CD20 antibody GA101 is differentiated from the two approved type I CD20 antibodies rituximab and ofatumumab by its overall preclinical activity, further supporting its clinical investigation.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Murinos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/efeitos adversos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Rituximab , Ensaios Antitumorais Modelo de Xenoenxerto
19.
PLoS One ; 8(2): e58056, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460925

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of multicentric Castleman's disease, primary effusion lymphoma and Kaposi's sarcoma. In this study, we show that like the C-type lectin DC-SIGN, the closely related DC-SIGNR can also enhance KSHV infection. Following infection, they are both targeted for down modulation and our data indicate that the KSHV MARCH-family ubiquitin ligase K5 is mediating this regulation and subsequent targeting for degradation of DC-SIGN and DC-SIGNR in the context of the virus. The closely related viral K3 protein, is also able to target these lectins in exogenous expressions studies, but only weakly during viral infection. In addition to requiring a functional RING-CH domain, several protein trafficking motifs in the C-terminal region of both K3 and K5 are important in regulation of DC-SIGN and DC-SIGNR. Further exploration of this modulation revealed that DC-SIGN is endocytosed from the cell surface in THP-1 monocytes, but degraded from an internal location with minimal endocytosis in HEK-293 cells. Pull-down data indicate that both K3 and K5 preferentially associate with immature forms of the lectins, mediating their ubiquitylation and degradation. Together, these data emphasize the molecular complexities of K3 and K5, while expanding the repertoire of targets of these two viral proteins.


Assuntos
Moléculas de Adesão Celular/metabolismo , Regulação para Baixo , Herpesvirus Humano 8/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Membrana Celular/metabolismo , Endocitose , Células HEK293 , Herpesvirus Humano 8/patogenicidade , Humanos , Imunoprecipitação , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteólise , Relação Estrutura-Atividade , Tirosina/metabolismo , Ubiquitinação , Proteínas Virais/química
20.
Clin Cancer Res ; 19(5): 1126-38, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23209031

RESUMO

PURPOSE: Anti-EGF receptor (EGFR) antibodies and small-molecule tyrosine kinase inhibitors have shown activity in epithelial tumors; however, agents that work by blocking the EGFR growth signal are ineffective when the oncogenic stimulus arises downstream, such as in tumors with KRAS mutations. Antibodies of the IgG1 subclass can also kill tumor cells directly through antibody-dependent cell-mediated cytotoxicity (ADCC), and the efficacy of this is determined by the interaction of the Fc portion of the target cell-bound antibody and Fc receptors present on immune effector cells. EXPERIMENTAL DESIGN: We report the development of GA201, a novel anti-EGFR monoclonal antibody with enhanced ADCC properties. GA201 was derived by humanization of the rat ICR62 antibody. The Fc region of GA201 was glycoengineered to contain bisected, afucosylated carbohydrates for enhanced binding to FcγRIIIA. RESULTS: In vitro binding of GA201 to EGFR inhibited EGF ligand binding, EGFR/HER2 heterodimerization, downstream signaling, and cell proliferation to a similar extent as cetuximab. However, GA201 exhibited superior binding to both the low- and high-affinity variants of FcγRIIIA. This resulted in significantly enhanced induction of ADCC compared with cetuximab against both KRAS-wild-type and -mutant tumor cells lines. This enhanced ADCC translated into superior in vivo efficacy in a series of mouse xenograft models. Efficacy of GA201 was further increased when administered in combination with chemotherapy (irinotecan). CONCLUSIONS: These data suggest that GA201 may be more effective than cetuximab in patients with EGFR-positive solid tumors and may also represent a first-in-class treatment of patients with KRAS-mutated tumors. Clin Cancer Res; 19(5); 1126-38. ©2012 AACR.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Antineoplásicos/farmacologia , Receptores ErbB/metabolismo , Glicoproteínas/farmacologia , Engenharia Metabólica , Neoplasias/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cetuximab , Desenho de Fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Glicosilação/efeitos dos fármacos , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos SCID , Camundongos Transgênicos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Polissacarídeos/metabolismo , Ratos , Receptor ErbB-2/metabolismo , Receptores de IgG/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...